skip to main content


Search for: All records

Award ID contains: 1926199

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report here extracting SiO2 as spirosiloxane [(CH3)2C(O)CH2CH(O)CH3]2Si from rice hull ash (RHA) to carefully control the SiO2 : C mole ratios, allowing direct carbothermal reduction to SiC, Si3N4, or Si2N2O without the need to add extra carbon and as a mechanism to preserve the original nanocomposite structure. We can adjust SiO2 : C ratios from 2 : 15 to 13 : 35 simply by reacting RHA with hexylene glycol (HG) with catalytic base to distillatively extract SiO2 to produce silica depleted RHA (SDRHA) with SiO2 contents of 40–65 wt% and corresponding carbon contents of 60–35 wt% with specific surface areas (SSAs) of >400 m2 g−1. On heating SDRHA40–65 at 1400–1500 °C in an Ar, N2, or N2–H2 atmosphere, XRD patterns reveal formation of SiC, Si3N4, or Si2N2O as the major phase with some residual hard carbon. SEM studies reveal mixtures of particles and whiskers in the products, which show BET specific surface areas >40 m2 g−1 after oxidative removal of excess carbon. Dilute acid and boiling water prewashing of RHA with milling eliminates typical product impurities compared to those found using conventional carbothermal reduction of agricultural wastes, which qualifies the resulting composites as components for electrochemical energy storage devices among other applications, to be reported elsewhere. 
    more » « less
  2. Electrochemical energy storage is a cost-effective, sustainable method for storing and delivering energy gener- ated from renewable resources. Among electrochemical energy storage devices, the lithium-ion battery (LIB) has dominated due to its high energy and power density. The success of LIBs has generated increased interest in sodium-ion battery (NaB) technology amid concerns of the sustainability and cost of lithium resources. In recent years, numerous studies have shown that sodium-ion solid-state electrolytes (NaSEs) have considerable potential to enable new cell chemistries that can deliver superior electrochemical performance to liquid-electrolyte-based NaBs. However, their commercial implementation is hindered by slow ionic transport at ambient and chemical/ mechanical incompatibility at interfaces. In this review, various NaSEs are first characterized based on individual crystal structures and ionic conduction mechanisms. Subsequently, selected methods of modifying interfaces in sodium solid-state batteries (NaSSBs) are covered, including anode wetting, ionic liquid (IL) addition, and composite polymer electrolytes (CPEs). Finally, examples are provided of how these techniques improve cycle life and rate performance of different cathode materials including sulfur, oxide, hexacyanoferrate, and phosphate-type. A focus on interfacial modification and optimization is crucial for realizing next-generation batteries. Thus, the novel methods reviewed here could pave the way toward a NaSSB capable of with- standing the high current and cycle life demands of future applications. 
    more » « less
  3. Biomass-derived materials offer low carbon approaches to energy storage. High surface area SiC w/wo 13 wt% hard carbon (SiC/HC, SiC/O), derived from carbothermal reduction of silica depleted rice hull ash (SDRHA), can function as Li+ battery anodes. Galvanostatic cycling of SiC/HC and SiC/O shows capacity increases eventually to >950 mA h g−1 (Li1.2–1.4SiC) and >740 mA h g−1 (Li1.1SiC), respectively, after 600 cycles. Post-mortem investigation via XRD and 29Si MAS NMR reveals partial phase transformation from 3C- to 6H-SiC, with no significant changes in unit cell size. SEMs show cycled electrodes maintain their integrity, implying almost no volume expansion on lithiation/delithiation, contrasting with >300% volume changes in Si anodes on lithiation. Significant void space is needed to compensate for these volume changes with Si in contrast to SiC anodes suggesting nearly competitive capacities. 6Li MAS NMR and XPS show no evidence of LixSi, with Li preferring all-C environments supported by computational modeling. Modeling also supports deviation from the 3C phase at high Li contents with minimal volume changes. 
    more » « less
  4. Metal nitrides are intensely investigated because they can offer high melting points, excellent corrosion resistance, high hardness, electronic and magnetic properties superior to the corresponding metals/metal oxides. Thus, they are used in diverse applications including refractory materials, semiconductors, elec- tronic devices, and energy storage/conversion systems. Here, we present a sim- ple, novel, scalable and general route to metal nitride precursors by reactions of metal chlorides with hexamethyldisilazane [HMDS, (Me3 Si)2 NH] in tetrahydro- furan or acetonitrile at low temperatures (ambient to 60◦C/N2). Such reactions have received scant attention in the literature. The work reported here focuses primarily on the Al-HMDS precursor pro- duced from the reaction of AlCl3 with HMDS (mole ratio = 1:3) characterized by matrix-assisted laser desorption/ionization-time of flight, Fourier-transform infrared spectroscopy, thermogravimetric analysis-differential thermal analysis, and multinuclear nuclear magnetic resonance spectroscopy (NMRs) for chemi- cal and structural analyses. The Al-HMDS precursor heated to 1600◦C/4 h/N2 produces aluminum nitride, characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy/energy-dispersive X- ray spectroscopy, and magic-angle spinning NMR. On heating to 800–1200◦C/4 h/N2, the precursor transforms to an amorphous, oxygen-sensitive powder with very high surface areas (>200 m2/g) indicating nanosized particles, which can be used as additives to polymer matrices to modify their thermal stabilities. Al2O3 is also presented in the final product after heating, due to its high susceptibility to oxidation. This approach was extended via proof-of-concept studies to other metal chloride systems, including Zn-HMDS, Cu-HMDS, Fe-HMDS, and Bi-HMDS. The formed precursors are volatile, offering the potential utility as gas-phase deposition pre- cursors for their corresponding metal nitrides. 
    more » « less
  5. null (Ed.)
    Efforts to develop polymer precursor electrolytes that offer properties anticipated to be similar or superior to (lithium phosphorus oxynitride, LiPON) glasses are reported. Such precursors offer the potential to be used to process LiPON-like thin glass/ceramic coatings for use in all solid state batteries, ASBs. Here, LiPON glasses provide a design basis for the synthesis of sets of oligomers/polymers by lithiation of OP(NH2)3−x(NH)x [from OP(NH)3],OP- (NH2)3‑x(NHSiMe3)x and [PN]3(NHSiMe3)6−x(NH)x. The resulting systems have degrees of polymerization of 5−20. Treatment with selected amounts of LiNH2 provides varying degrees of lithiation and Li+ conducting properties commensurate with Li+ content. Polymer electrolytes impregnated in/on Celgard exhibit Li+ conductivities up to ∼1 × 10−5S cm−1 at room temperature and are thermally stable to ∼150 °C. A Li−S battery assembled using a Li6SiPON composition polymer electrolyte exhibits an initial reversible capacity of 1500 mAh gsulfur −1 and excellent cycle performance at 0.25 and 0.5 C rate over 120 cycles at room temperature 
    more » « less
  6. The electrochemical performance of LixSiON (x = 2, 4, and 6) polymer electrolytes derived from the agricultural waste, rice hull ash (RHA, 80−90 wt % SiO2), is reported. Silica can be extracted from RHA by base-catalyzed reaction with hexylene glycol forming the spirosiloxane [(C6H12O2)2Si, SP] that distills from the reaction solution. LixSiON polymer electrolytes form on reacting SP with xLiNH2, offering a low-cost, low- temperature, and green synthesis route. The effect of N and Li+ concentrations in the polymer electrolytes are correlated with ionic and electrical conductivity. X-ray photoelectron spectroscopy studies confirm that N and Li contents increase with increasing LiNH2 content. The amorphous nature and high Li+ contents of the Li6SiON electrolyte provide an optimal ionic conductivity (6.5 × 10−6) at ambient temperature when coated on Celgard. Furthermore, the LixSiON polymer electrolytes offer high Li+ transference numbers (∼0.75−1), enabling assembly of Li symmetric cells with high critical current densities (3.75 mA cm−2). Finally, Li-SPAN (sulfurized, carbonized polyacrylonitrile) half-cells with Li6SiON polymer electrolytes deliver discharge capacities of ∼765 and 725 mAh/g at 0.25 and 0.5 C rates over 50 cycles. 
    more » « less
  7. Li4Ti5O12 (LTO) has received considerable interest as an alternate anode material for high power density batteries for large scale applications. However, LTO suffers from poor Li+ diffusivity and poor electronic conductivity, resulting in capacity loss and poor rate performance. Here we demonstrate a facile synthesis of LTO NPs using liquid-feed flame spray pyrolysis (LF-FSP) which provides high surface area (∼38 m2/g) spinel structure LTO NPs with average particle sizes (APSs) of 45 ± 0.3 nm. Pristine LTO-Li half-cells exhibit reversible capacity of 70 mAh/g at 10 C. In this study, we show that mixing LiAlO2 NPs (5 wt %) and Li6SiON polymer precursor (10 wt %) with pristine LTO via ball-milling and ultrasonication followed by tape casting enhances the LTO rate performance providing reversible capacity of ∼217 mAh/g at 5 C over 500 cycles. The Li6SiON polymer electrolyte is synthesized from rice hull ash (RHA), an agricultural waste, providing a green synthetic approach to electrode coating materials. CV and EIS studies indicate that adding the solid and polymer electrolytes reduces charge-transfer resistance and electrode polarization, enhancing both reversibility and the LTO Li+ diffusion coefficient from 4.6 × 10−14 to 2.7 × 10−12 cm2/s. 
    more » « less
  8. A set of LixSiON (x = 2, 4, 6) polymer precursors to a novel solid-state electrolyte system were synthesized starting from rice hull ash (RHA), an agricultural waste, providing a green route towards the assembly of all solid-state batteries (ASSBs). Silica, ∼90 wt% in RHA, can be catalytically (alkali base) dissolved (20–40 wt%) in hexylene glycol (HG) and distilled directly from the reaction mixture as the spirosiloxane [(C6H14O2)2Si, SP] at 200 °C. SP can be lithiated using controlled amounts of LiNH2 to produce LixSiON oligomers/polymers with MWs up to ∼1.5 kDa as characterized by FTIR, MALDI-ToF, multinuclear NMR, TGA-DTA, XRD, XPS, SEM and EDX. XPS analyses show that Li contents depend solely on added LiNH2 but found N contents are only ≤1 at%. NH2 likely is removed as NH3 during sample preparation (vacuum/ overnight). In contrast, MALDI indicates N contents of ∼5–30 at% N with shorter drying times (vacuum/ minutes). 7Li NMR positive chemical shifts suggest that precursor bound Li+ ions dissociate easily, ben- eficial for electrochemical applications. The 7Li shifts correlate to Li contents as well as Li+ conductivities. 1H, 13C and 29Si NMRs of the Li6SiON precursor show fluxional behavior implying high Li+ mobility. Dense microstructures are observed for Li4SiON and Li6SiON pellets heated to 200 °C/2 h/N2. Impedance studies suggest that ionic conductivities increase with Li content; the Li6SiON precursor offers the highest ambient conductivity of 8.5 × 10−6 S cm−1 after heating to 200 °C/2 h/N2. 
    more » « less
  9. null (Ed.)
    Recently, γ-LiAlO2 has attracted considerable attention as a coating in Li-ion battery electrodes. However, its potential as a Li+ ceramic electrolyte is limited due to its poor ionic conductivity (<10−10 S cm−1). Here, we demonstrate an effective method of processing LiAlO2 membranes (<50 μm) using nanopowders (NPs) produced via liquid-feed flame spray pyrolysis(LF-FSP). Membranes consisting of selected mixtures of lithium aluminate polymorphs and Li contents were processed byconventional tape casting of NPs followed by thermocompressionof the green films (100 °C/10 kpsi/10 min). The sintered greenfilms (1100 °C/2 h/air) present a mixture of LiAlO2 (∼72 wt %)and LiAl5O8 (∼27 wt %) phases, offering ionic conductivities (>10−6 S cm−1) at ambient with an activation energy of 0.5 eV. This greatly increases their potential utility as ceramic electrolytes for all-solid-state batteries, which could simplify battery designs, significantly reduce costs, and increase their safety. Furthermore, a solid-state Li/Li3.1AlO2/Li symmetric cell was assembled and galvanostatically cycled at 0.375 mA cm−2 current density, exhibiting a transference number ≈ 1. 
    more » « less
  10. null (Ed.)
    Rice hull ash (RHA, an agricultural waste) produced during combustion of rice hulls to generate electricity consists (following dilute acid leaching) of high surface area SiO2 (80–90 wt%) and 10–20 wt% carbon (80 m2 g−1 total). RHA SiO2 is easily extracted by distillation (spirosiloxane) producing SDRHA, which offers an opportunity to develop “green” hybrid lithium-ion capacitors (LICs) electrodes. SDRHA consists of 50–65 wt% SiO2 with the remainder carbon with a specific surface area of ≈220 m2 g−1. SDRHA microstructure presents a highly irregular and disordered nanocomposite composed of nanosilica closely connected via graphene layers enhancing Li-ion mobility during charge/discharge process. SDRHA electrochemicalproperties were assessed by assembling Li/SDRHA half-cells and LiNi0.6Co0.2Mn0.2O2 (NMC622)-SDRHA full-cells. The half-cell delivered a high specific capacity of 250 mA h g−1 at 0.5C and retained a capacity of 200 mA h g−1 at 2C for 400 h. In contrast to the poor cycle performance of NMC based batteries at high C-rates, the hybrid full-cell demonstrated a high specific capacitance of 200 F g−1 at 4C. In addition, both the half and full hybrid cells demonstrate excellent coulombic efficiencies (∼100%). These results suggest that low cost and environmentally friendly SDRHA, may serve as a potentialalternative electrode material for LICs. 
    more » « less