skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1745009

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Food resources in the ocean are often found in low densities, and need to be concentrated for efficient consumption. This is done in part by oceanographic features transporting and locally concentrating plankton, creating a highly patchy resource. Lagrangian approaches applied to ocean dynamics can identify these transport features, linking Lagrangian transport and spatial ecology. However, little is known about how Lagrangian approaches perform in ageostrophic coastal flows. This study evaluates two Lagrangian Coherent Structure metrics against the distribution of phytoplankton; Finite Time Lyapunov Exponents (FTLE) and Relative Particle Density (RPD). FTLE and RPD are applied to High Frequency Radar (HFR) observed surface currents within a biological hotspot, Palmer Deep Canyon Antarctica. FTLE and RPD identify different transport patterns, with RPD mapping single particle trajectories and FTLE tracking relative motion of paired particles. Simultaneous measurements of circulation and phytoplankton were gathered through the integration of vessel and autonomous glider surveys within the HFR footprint. Results show FTLE better defined phytoplankton patches compared to RPD, with the strongest associations occurring in stratified conditions, suggesting that phytoplankton congregate along FTLE ridges in coastal flows. This quantified relationship between circulation and phytoplankton patches emphasizes the role of transport in the maintenance of coastal food webs. 
    more » « less
  2. Abstract Diel vertical migration (DVM) is common in zooplankton populations worldwide. Every day, zooplankton leave the productive surface ocean and migrate to deepwater to avoid visual predators and return to the surface at night to feed. This behavior may also help retain migrating zooplankton in biological hotspots. Compared to fast and variable surface currents, deep ocean currents are sluggish, and can be more consistent. The time spent in the subsurface layer is driven by day length and the depth of the surface mixed layer. A subsurface, recirculating eddy has recently been described in Palmer Deep Canyon (PDC), a submarine canyon in a biological hotspot located adjacent to the West Antarctic Peninsula. Circulation model simulations have shown that residence times of neutrally buoyant particles increase with depth within this feature. We hypothesize that DVM into the subsurface eddy increases local retention of migrating zooplankton in this feature and that shallow mixed layers and longer days increase residence times. We demonstrate that simulated vertically migrating zooplankton can have residence times on the order of 30 days over the canyon, which is five times greater than residence times of near‐surface, nonmigrating zooplankton within PDC and other adjacent coastal regions. The potential interaction of zooplankton with this subsurface feature may be important to the establishment of the biological hotspot around PDC by retaining food resources in the region. Acoustic field observations confirm the presence of vertical migrators in this region, suggesting that zooplankton retention due to the subsurface eddy is feasible. 
    more » « less
  3. Abstract Palmer Deep Canyon is one of the biological hotspots associated with deep bathymetric features along the West Antarctic Peninsula. The upwelling of nutrient‐rich Upper Circumpolar Deep Water to the surface mixed layer in the submarine canyon has been hypothesized to drive increased phytoplankton biomass, attracting krill, penguins and other top predators to the area. However, observations in Palmer Deep Canyon lack a clearin‐situupwelling signal, laboratory experiments do not illustrate a physiological response by phytoplankton to Upper Circumpolar Deep Water, and surface residence times are too short for phytoplankton populations to reasonably respond to any locally upwelled nutrients. This suggests that local upwelling may not be the mechanism that links Palmer Deep Canyon to increased biological activity. Previous observations of isopycnal doming within the canyon suggested that a subsurface recirculating feature may be present. Here, usingin‐situmeasurements and a circulation model, we demonstrate that the presence of a recirculating eddy may contribute to the maintenance of the biological hotspot by increasing residence times at depth and retaining a distinct layer of biological particles. Neutrally buoyant particle simulations showed that residence times increase to ∼175 days at 150 m within the canyon during the austral summer.In‐situparticle scattering, flow cytometry, and water samples from within the subsurface eddy suggest that retained particles are detrital in nature. Our results suggest that this seasonal, retentive feature in Palmer Deep Canyon is important to the retention of biological material and may contribute to the maintenance of this hotspot. 
    more » « less
  4. Abstract The Palmer Deep canyon along the West Antarctic Peninsula is a biological hotspot with abundant phytoplankton and krill supporting Adélie and gentoo penguin rookeries at the canyon head. Nearshore studies have focused on physical mechanisms driving primary production and penguin foraging, but less is known about finer‐scale krill distribution and density. We designed two acoustic survey grids paired with conductivity–temperature–depth profiles within adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica. The grids were sampled from January to March 2019 to assess variability in krill availability and associations with oceanographic properties. Krill density was similar in the two regions, but krill swarms were longer and larger in the gentoo foraging region, which was also less stratified and had lower chlorophyll concentrations. In the inshore zone near penguin colonies, depth‐integrated krill density increased from summer to autumn (January–March) independent of chlorophyll concentration, suggesting a life history‐driven adult krill migration rather than a resource‐driven biomass increase. The daytime depth of krill biomass deepened through the summer and became decoupled from the chlorophyll maximum in March as diel vertical migration magnitude likely increased. Penguins near Palmer Station did not appear to be limited by krill availability during our study, and regional differences in krill depth match the foraging behaviors of the two penguin species. Understanding fine‐scale physical forcing and ecological interactions in coastal Antarctic hotspots is critical for predicting how environmental change will impact these ecosystems. 
    more » « less
  5. Salpa thompsoniis an ephemerally abundant pelagic tunicate in the waters of the Southern Ocean that makes significant contributions to carbon flux and nutrient recycling in the region. WhileS. thompsoni, hereafter referred to as “salps”, was historically described as a polar-temperate species with a latitudinal range of 40 – 60°S, observations of salps in coastal waters of the Western Antarctic Peninsula have become more common in the last 50 years. There is a need to better understand the variability in salp densities and vertical distribution patterns in Antarctic waters to improve predictions of their contribution to the global carbon cycle. We used acoustic data obtained from an echosounder mounted to an autonomous underwater Slocum glider to investigate the anomalously high densities of salps observed in Palmer Deep Canyon, at the Western Antarctic Peninsula, in the austral summer of 2020. Acoustic measurements of salps were made synchronously with temperature and salinity recordings (all made on the glider downcasts), and asynchronously with chlorophyll-ameasurements (made on the glider upcasts and matched to salp measurements by profile) across the depth of the water column near Palmer Deep Canyon for 60 days. Using this approach, we collected high-resolution data on the vertical and temporal distributions of salps, their association with key water masses, their diel vertical migration patterns, and their correlation with chlorophyll-a. While salps were recorded throughout the water column, they were most prevalent in Antarctic Surface Water. A peak in vertical distribution was detected from 0 – 50 m regardless of time of day or point in the summer season. We found salps did not undergo diel vertical migration in the early season, but following the breakdown of the remnant Winter Water layer in late January, marginal diel vertical migration was initiated and sustained through to the end of our study. There was a significant, positive correlation between salp densities and chlorophyll-a. To our knowledge, this is the first high resolution assessment of salp spatial (on the vertical) and temporal distributions in the Southern Ocean as well as the first to use glider-borne acoustics to assess salpsin situ. 
    more » « less
  6. The distribution of marine zooplankton depends on both ocean currents and swimming behavior. Many zooplankton perform diel vertical migration (DVM) between the surface and subsurface, which can have different current regimes. If concentration mechanisms, such as fronts or eddies, are present in the subsurface, they may impact zooplankton near-surface distributions when they migrate to near-surface waters. A subsurface, retentive eddy within Palmer Deep Canyon (PDC), a submarine canyon along the West Antarctic Peninsula (WAP), retains diurnal vertically migrating zooplankton in previous model simulations. Here, we tested the hypothesis that the presence of the PDC and its associated subsurface eddy increases the availability and delivery of simulated Antarctic krill to nearby penguin foraging regions with model simulations over a single austral summer. We found that the availability and delivery rates of simulated krill to penguin foraging areas adjacent to PDC were greater when the PDC was present compared to when PDC was absent, and when DVM was deepest. These results suggest that the eddy has potential to enhance krill availability to upper trophic level predators and suggests that retention may play a significant role in resource availability for predators in other similar systems along the WAP and in other systems with sustained subsurface eddies. 
    more » « less
  7. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less