skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soil Moisture on the Main Cropping System Experiment at the Kellogg Biological Station, Hickory Corners, MI (1989 to 2019)
Dataset Abstract Measurements of soil moisture began in 1989 for all treatments on the LTER main site and in 1993 on the successional and forest sites. Soil moisture is analyzed on the baseline soil samplings which are collected twice monthly or monthly during the growing season. The percent gravimetric moisture content is calculated on a dry weight basis. Other datasets from the baseline soil samplings include Inorganic nitrogen and Total N and Total C. original data source http://lter.kbs.msu.edu/datasets/18  more » « less
Award ID(s):
1832042
PAR ID:
10357095
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dataset AbstractMeasurement of soil inorganic nitrogen began in 1989 for all treatments on the LTER Main Site and 1993 on the Successional and Forest sites. Ammonium and nitrate are analyzed twice monthly or monthly during the growing season on baseline soil samplings. Additional datasets from the Baseline Soil Samplings include soil moisture, total N and total C.original data source http://lter.kbs.msu.edu/datasets/24 
    more » « less
  2. Dataset Abstract Trace gases (nitrous oxide, methane, and carbon dioxide) have been measured on the LTER Main Site since 1991 and on Successional and Forest sites since 1993. Trace gas fluxes are measured twice monthly or monthly until the ground freezes using permanently-installed, in-situ static chambers. CH4 and N2O are analyzed with gas-chromatography and CO2 with an infrared gas analyzer. Soil moisture and temperature are measured during sampling. original data source http://lter.kbs.msu.edu/datasets/16 
    more » « less
  3. Abstract Anthropogenic climate change has already affected drought severity and risk across many regions, and climate models project additional increases in drought risk with future warming. Historically, droughts are typically caused by periods of below‐normal precipitation and terminated by average or above‐normal precipitation. In many regions, however, soil moisture is projected to decrease primarily through warming‐driven increases in evaporative demand, potentially affecting the ability of negative precipitation anomalies to cause drought and positive precipitation anomalies to terminate drought. Here, we use climate model simulations from Phase Six of the Coupled Model Intercomparison Project (CMIP6) to investigate how different levels of warming (1, 2, and 3°C) affect the influence of precipitation on soil moisture drought in the Mediterranean and Western North America regions. We demonstrate that the same monthly precipitation deficits (25th percentile relative to a preindustrial baseline) at a global warming level of 2°C increase the probability of both surface and rootzone soil moisture drought by 29% in the Mediterranean and 32% and 6% in Western North America compared to the preindustrial baseline. Furthermore, the probability of a dry (25th percentile relative to a preindustrial baseline) surface soil moisture month given a high (75th percentile relative to a preindustrial baseline) precipitation month is 6 (Mediterranean) and 3 (Western North America) times more likely in a 2°C world compared to the preindustrial baseline. For these regions, warming will likely increase the risk of soil moisture drought during low precipitation periods while simultaneously reducing the efficacy of high precipitation periods to terminate droughts. 
    more » « less
  4. Dataset Abstract A spatial variability study conducted across the LTER Main Site area (45 ha) at KBS prior to dividing the site into 1-ha experimental plots. During the 1988 growing season a stratified unaligned sampling scheme was used to collect 400-600 geo-referenced samples across the site (uniformly planted to a single variety of soybeans) for: geomorphological characteristics (microtopography, soil horizon depths, bulk density, texture); soil chemical characteristics (pH, NO3, NH4, total C, total N, moisture, inorganic P, trace metals); soil biological characteristics (N mineralization potentials, microbial biomass C, microbial biomass N, fungal/bacterial ratios, nematodes and other soil invertebrates; seed bank size); plant weed species abundance, weed biomass at peak standing crop); and insect characteristics (major pest and predator species). Most soil samples were taken before crop emergence, plant phenology samples were taken throughout the growing season, biomass samples were taken at physiological maturity, and insect samples were taken continuously. Dried soil and plant samples are archived for potential future analysis. original data source http://lter.kbs.msu.edu/datasets/6 
    more » « less
  5. The Monsoon Rainfall Manipulation Experiment (MRME) is designed to understand changes in ecosystem structure and function of a semiarid grassland caused by increased precipitation variability, by altering rainfall pulses, and thus soil moisture, that drive primary productivity, community composition, and ecosystem functioning. The overarching hypothesis being tested is that changes in event size and frequency will alter grassland productivity, ecosystem processes, and plant community dynamics. Treatments include (1) a monthly addition of 20 mm of rain in addition to ambient, and a weekly addition of 5 mm of rain in addition to ambient during the months of July, August and September. We predict that soil N availability with interact with rainfall event size to alter net primary productivity during the summer monsoon. Specifically, productivity will be higher on fertilized relative to control plots, and productivity will be highest on N addition plots in treatments with a small number of large events because these events infiltrate deeper and soil moisture is available longer following large compared to small events. 
    more » « less