skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trace Gas Fluxes on the Main Cropping System Experiment at the Kellogg Biological Station, Hickory Corners, MI (1991 to 2019)
Dataset Abstract Trace gases (nitrous oxide, methane, and carbon dioxide) have been measured on the LTER Main Site since 1991 and on Successional and Forest sites since 1993. Trace gas fluxes are measured twice monthly or monthly until the ground freezes using permanently-installed, in-situ static chambers. CH4 and N2O are analyzed with gas-chromatography and CO2 with an infrared gas analyzer. Soil moisture and temperature are measured during sampling. original data source http://lter.kbs.msu.edu/datasets/16  more » « less
Award ID(s):
1832042
PAR ID:
10354403
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Soil atmosphere fluxes of the trace gases; carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) have been measured at several locations at the Hubbard Brook Experimental Forest (HBEF) including 1) the “freeze” study reference plots that provide contrast between stands dominated (80%) by sugar maple versus yellow birch and low and high elevation areas, 2) the Bear Brook Watershed where trace gas sampling is coordinated with long-term monitoring of microbial biomass and activity and 3) watershed 1 where trace gas sampling locations were co-located with long-term microbial biomass and activity monitoring sites that are located near a subset of the lysimeter sites established for the calcium addition study on this watershed. This dataset contains the Watershed 1 and Bear Brook data. Freeze plot trace gas can be found in: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=251. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  2. Soil atmosphere fluxes of the trace gases; carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) have been measured at several locations at the Hubbard Brook Experimental Forest (HBEF) including 1) the “freeze” study reference plots that provide contrast between stands dominated (80%) by sugar maple versus yellow birch and low and high elevation areas, 2) the Bear Brook Watershed where trace gas sampling is coordinated with long-term monitoring of microbial biomass and activity and 3) watershed 1 where trace gas sampling locations were co-located with long-term microbial biomass and activity monitoring sites that are located near a subset of the lysimeter sites established for the calcium addition study on this watershed. This dataset contains the Freeze study data. Watershed 1 and Bear Brook trace gas data can be found in: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=116. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data have been published in: Groffman, P. M., Hardy, J. P., Driscoll, C. T., & Fahey, T. J. (2006). Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology, 12, 1748–1760. 
    more » « less
  3. Abstract India is largely devoid of high‐quality and reliable on‐the‐ground measurements of fine particulate matter (PM2.5). Ground‐level PM2.5concentrations are estimated from publicly available satellite Aerosol Optical Depth (AOD) products combined with other information. Prior research has largely overlooked the possibility of gaining additional accuracy and insights into the sources of PM using satellite retrievals of tropospheric trace gas columns. We evaluate the information content of tropospheric trace gas columns for PM2.5estimates over India within a modeling testbed using an Automated Machine Learning (AutoML) approach, which selects from a menu of different machine learning tools based on the data set. We then quantify the relative information content of tropospheric trace gas columns, AOD, meteorological fields, and emissions for estimating PM2.5over four Indian sub‐regions on daily and monthly time scales. Our findings suggest that, regardless of the specific machine learning model assumptions, incorporating trace gas modeled columns improves PM2.5estimates. We use the ranking scores produced from the AutoML algorithm and Spearman’s rank correlation to infer or link the possible relative importance of primary versus secondary sources of PM2.5as a first step toward estimating particle composition. Our comparison of AutoML‐derived models to selected baseline machine learning models demonstrates that AutoML is at least as good as user‐chosen models. The idealized pseudo‐observations (chemical‐transport model simulations) used in this work lay the groundwork for applying satellite retrievals of tropospheric trace gases to estimate fine particle concentrations in India and serve to illustrate the promise of AutoML applications in atmospheric and environmental research. 
    more » « less
  4. null (Ed.)
    Surface ocean biogeochemistry and photochemistry regulate ocean–atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or p CO 2 ) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N 2 O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes. 
    more » « less
  5. ABSTRACT Climate change is altering precipitation regimes that control nitrogen (N) cycling in terrestrial ecosystems. In ecosystems exposed to frequent drought, N can accumulate in soils as they dry, stimulating the emission of both nitric oxide (NO; an air pollutant at high concentrations) and nitrous oxide (N2O; a powerful greenhouse gas) when the dry soils wet up. Because changes in both N availability and soil moisture can alter the capacity of nitrifying organisms such as ammonia‐oxidizing bacteria (AOB) and archaea (AOA) to process N and emit N gases, predicting whether shifts in precipitation may alter NO and N2O emissions requires understanding how both AOA and AOB may respond. Thus, we ask: How does altering summer and winter precipitation affect nitrifier‐derived N trace gas emissions in a dryland ecosystem? To answer this question, we manipulated summer and winter precipitation and measured AOA‐ and AOB‐derived N trace gas emissions, AOA and AOB abundance, and soil N concentrations. We found that excluding summer precipitation increased AOB‐derived NO emissions, consistent with the increase in soil N availability, and that increasing summer precipitation amount promoted AOB activity. Excluding precipitation in the winter (the most extreme water limitation we imposed) did not alter nitrifier‐derived NO emissions despite N accumulating in soils. Instead, nitrate that accumulated under drought correlated with high N2O emission via denitrification upon wetting dry soils. Increases in the timing and intensity of precipitation that are forecasted under climate change may, therefore, influence the emission of N gases according to the magnitude and season during which the changes occur. 
    more » « less