skip to main content


Title: Mixing Loops, Mixing Envelopes, and Scattered Correlations among Trace Elements and Isotope Ratios Produced by Mixing of Melts Derived from a Spatially and Lithologically Heterogenous Mantle
Abstract Mixing has been widely used in the interpretation of radiogenic isotope ratios and highly incompatible trace element variations in basalts produced by melting of a heterogeneous mantle. The binary mixing model is constructed by considering mass balance of endmember components, which is independent of physical state and spatial distribution of the endmembers in the mantle source. Variations of radiogenic isotope ratios and highly incompatible trace elements in basalts also depend on the size and spatial distribution of chemical and lithological heterogeneities in the mantle source. Here we present a new mixing model and a mixing scheme that take into account of the size, spatial location, and melting history of enriched mantle (EM) and depleted mantle (DM) parcels in the melting column. We show how Sr, Nd, and Hf concentrations and isotope ratios in the aggregated or pooled melt collected at the top of the melting column vary as a function of location of the EM parcel in the melting column. With changing location of the EM parcel in the upwelling melting column, compositions of the pooled melt do not follow a single mixing curve expected by the binary mixing model. Instead, they define a mixing loop that has an enriched branch and a depleted branch joined by two extreme points in composition space. The origin of the mixing loop can be traced back to four types of EM distribution or configuration in the melting column. The shape of the mixing loop depends on the relative melting rate of the EM to that of the DM and the number and spacing of EM parcels in the melting column. Probabilities of sampling the enriched and depleted branches in the pooled melt are proportional to volume fractions of the enriched and depleted materials in the mantle source. Mixing of pooled melts from a bundle of melting columns results in mixing envelopes in the isotope ratio correlation diagrams. The mixing envelope is a useful tool for studying chemical variations in mantle-derived melts. As an application, we consider scattered correlations in 87Sr/86Sr vs. 143Nd/144Nd and 143Nd/144Nd vs. 176Hf/177Hf in mid-ocean ridge basalts. We show that such correlations arise naturally from melting of a spatially heterogeneous mantle.  more » « less
Award ID(s):
1852088
NSF-PAR ID:
10357257
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Petrology
Volume:
63
Issue:
9
ISSN:
0022-3530
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Oceanic island basalts are targeted for geochemical study because they provide a direct window into mantle composition and a wealth of information on the dynamics and timescales associated with Earth mixing. Previous studies mainly focused on the shield volcanic stage of oceanic islands and the more fusible, enriched mantle components that are easily distinguished in those basalts. Mantle depleted compositions are typically more difficult to resolve unless large amounts of this material participated in mantle melting (e.g., mid-ocean ridges), or unique processes allow for their compositions to be erupted undiluted, such as very small degrees of melting of a source with minimal fusible enriched components (e.g., rejuvenated basalts) or as xenoliths (e.g., abyssal peridotites). Mantle depleted components, defined here as material with low time-integrated Rb/Sr (low 87Sr/86Sr) and high time-integrated Sm/Nd and Lu/Hf ratios (high 143Nd/144Nd and 176Hf/177Hf) relative to primitive mantle, derive from a potentially very large volume reservoir (up to 80% of the mantle), and therefore need adequate characterization in order estimate the composition of the Earth and mantle-derived melts. This review focuses on mantle depleted compositions in oceanic island basalts using the Hawaiian-Emperor chain as a case study. The Hawaiian-Emperor chain is the ∼6000 km long geological record of the deeply sourced Hawaiian mantle plume, active for>81 Myr. Hawaiian volcanism evolves through four volcanic stages as a volcano traverses the Hawaiian plume: alkalic preshield, tholeiitic shield (80–90% volcano volume), alkalic postshield (∼1%), and silica undersaturated rejuvenated (< 0.1%). We report Pb-Sr-Nd-Hf isotope compositions and trace element concentrations of three rejuvenated Northwest Hawaiian Ridge basalts and compare them to an exhaustive compiled dataset of basalts from the Hawaiian Islands to the Emperor Seamounts. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes spanning ∼42 m.y. between the bend in the Hawaiian-Emperor chain and the Hawaiian Islands where there is no high-precision isotopic data published on the rejuvenated-stage over ∼47% of the chain. NWHR and Hawaiian Island rejuvenated basalts are geochemically similar, indicating a consistent source for rejuvenated volcanism over ∼12.5 million years. In contrast, shield-stage basalts from the oldest Emperor Seamounts are more depleted in isotopic composition (i.e., higher 176Hf/177Hf, and 143Nd/144Nd with lower 87Sr/86Sr and 208Pb*/206Pb*) and trace element concentrations (i.e., much lower concentrations of highly incompatible elements) than all other depleted Hawaiian basalts younger than the bend, including NWHR rejuvenated basalts. The strongly depleted source for the oldest Emperor Seamounts (> 70 Ma) was likely related to interaction with the Kula-Pacific-Izanagi mid-ocean ridge spreading system active near the Hawaiian plume in the Late Cretaceous. In contrast, the incompatible trace element ratios of NWHR rejuvenated basalts require a distinct source in the Hawaiian mantle plume that was imprinted by ancient (> 1 Ga) partial melting, likely ancient recycled oceanic lithosphere. This review of the geochemistry of Hawaiian depleted components documents the need for the sampling of multiple distinctive depleted compositions, each preferentially melted during specific periods of Hawaiian plume activity. This suggests that the composition of depleted components can evolve during the lifetime of the mantle plume, as observed for enriched components in the Hawaiian mantle plume. Changes in the composition of depleted components are dominantly controlled by the upper mantle tectonic configurations at the time of eruption (i.e., proximity to a mid-ocean ridge), as this effect overwhelms the signal imparted by potentially sampling different lower mantle components through time. 
    more » « less
  2. We present data for lithospheric mantle xenoliths sampled from two alkali basalts in south‐central Vietnam, Pleiku and Xuan Loc, including fertile spinel peridotites. To better determine the origins of the Indochinese subcontinental lithospheric mantle (SCLM), including impacts of posited tectonic extrusion, we present major and trace elements, and 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb in xenolith mineral separates. Most peridotites from Pleiku and Xuan Loc have fertile major element compositions, “depleted” and “spoon‐shaped” rare earth element (REE) patterns, interpreted to record prior melt depletion followed by melt metasomatism, and variable but generally depleted isotopic signatures (e.g., 87Sr/86Sr = 0.70238–0.70337 and 143Nd/144Nd = 0.512921–0.514190). A small group of refractory peridotites have “enriched” REE patterns suggesting more extensive metasomatism and enriched isotope ratios (87Sr/86Sr = 0.70405 and 143Nd/144Nd = 0.512755–0.512800). The presence of both fertile and refractory xenoliths records a heterogeneous SCLM beneath Vietnam. Based on geothermobarometry calculations, fertile xenoliths have equilibrium temperatures of 923–1,034°C and pressures of 11.7–15.8 kbar, while refractory xenoliths have comparable temperatures of 923–1,006°C, but lower pressures of 7.1–10.0 kbar, suggesting refractory rocks are dominantly present at shallower depths. We suggest that the lithospheric mantle has experienced variable melt extraction around 1.0–1.3 Ga, producing heterogeneous major element compositions. While we cannot rule out partial removal and replacement of the lithosphere, large‐scale delamination is not necessary to explain observed characteristics. The entire SCLM was more recently metasomatized by melts resembling Cenozoic basalts, suggesting recent asthenospheric melting has modified the SCLM by melt infiltration. 
    more » « less
  3. Abstract Pyroxenite veins and dikes are commonly observed in the mantle section of ophiolites. Because of their mantle occurrence, these pyroxenites are free from crustal contamination and offer a unique opportunity for studying mantle compositions and melt–rock interaction processes. We conducted an integrated petrological and geochemical study of a suite of composite orthopyroxenite, websterite, and pyroxene-bearing dunite veins from the Xiugugabu ophiolite located on the western segment of Yarlung–Zangbo Suture Zone. The dunite is separated from the host peridotite by a layer of pyroxenite, forming a composite vein system. Systematic variations in major, minor, and trace element compositions in minerals across the composite veins are observed. Two generations of orthopyroxenes in the pyroxenites are characterized by high Mg#, low TiO2 concentrations, and depleted patterns of incompatible trace elements. Clinopyroxenes in the pyroxenites are characterized by high Mg#, low contents of TiO2 and Na2O, spooned shaped REE patterns, and a negative Zr anomaly. Through major and trace element modeling, we showed that both orthopyroxene and clinopyroxene were in equilibrium with melts with different compositions. This hypothesis is further confirmed by distinct initial Nd and Hf isotope ratios in the two pyroxenes. A model for the formation of composite pyroxenite veins is developed, whereby hydrous and silica-rich melts percolate along the margins of a dunite channel. The orthopyroxenite was formed by the reaction between a hydrous, silica-rich melt and the surrounding peridotite. The websterite is formed by reactive crystallization of a hybrid melt produced by mixing silica-rich melt and the melt formed by remelting of previously depleted peridotite in the deeper part of the mantle column. The extremely enriched Nd–Hf isotope compositions of the pyroxenite veins (εNd = −20.3 to +11.5 and εHf = −13.2 to +25.3, 125 million years ago) can be explained by the addition of ancient, recycled sediments to the mantle source in a supra-subduction setting. Based on the low-Cr# spinel in the Xiugugabu dunites (Cr# = 19–50) and the depleted nature of the parental melt of the Xiugugabu pyroxenites, we deduced that the formation of pyroxenites postdate the formation of the Xiugugabu ophiolite at ~125–130 Ma. Collectively, results from this study have provided support to the hypothesis that the Xiugugabu ophiolite experience a two-stage evolution, i.e., firstly formed in a mid-ocean ridge setting and subsequently modified in a supra subduction zone. 
    more » « less
  4. Models of subduction zone magmatism ascribe the andesitic composition of arc magmas to crustal processes, such as crustal assimilation and/or fractional crystallization, that basaltic mantle melts experience during their ascent through the upper plate crust. However, results from time series study of olivine-phyric high-Nb basalts and basaltic andesites from two monogenetic arc volcanoes (V. Chichinautzin and Texcal Flow) that are constructed on the ~45 km thick continental basement of the central Transmexican Volcanic Belt (TMVB) are inconsistent with this model. Instead, ratios of radiogenic isotope and incompatible trace elements suggest that these volcanoes were constructed through multiple individual melt batches ascending from a progressively changing mantle source. Moreover, the high Ni contents of the olivine phenocrysts, together with their high mantle-like 3He/4Heoliv =7-8 Ra with high crustal δ18O oliv = +5.5 to +6.5‰ (n=12) point to the presence of secondary ‘reaction pyroxenites’ in the mantle source that create primary silicic arc magmas through melt-rock reaction processes in the mantle [1, 2] . Here we present additional trace element concentration of the high-Ni olivines by electron microprobe (Mn, Ca) and laser-ablation ICPMS (Li, Cr and V) analysis in order to test this model. Olivine Li (2-7 ppm) and Mn (1170- 2810 ppm) increase with decreasing fosterite (Fo89 to Fo75), while Cr (29-364 ppm), V (4-11 ppm) and Ca (825-2390 ppm) decrease. Quantitative modeling shows that these trends in their entirety cannot be controlled by fractional crystallization under variable melt water H2O or oxygen fugacity (fO2), or co-crystallization of Cr-spinel. Instead, the variations support the existence of compositionally distinct melt batches during earliest melt evolution. Moreover, the trace element trends are qualitatively consistent with a model of progressive source depletion by serial melting (shown in olivine Ca, V and Cr) that is triggered by the repetitive addition of silicic slab components (shown by olivine Li). These findings suggest mantle source variations are not eliminated despite the thick crust these magmas pass during ascent. [1] Straub et al. (2013) J Petrol 54 (4): 665-701; [2] Straub et al. (2015) Geochim Cosmochim Acta 166: 29-52. 
    more » « less
  5. The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust. 
    more » « less