Estimating central aortic blood pressure is important for cardiovascular health and risk prediction purposes. Cardiovascular system is a multi-channel dynamical system that yields multiple blood pressures at various body sites in response to central aortic blood pressure. This paper concerns the development and analysis of an observer-based approach to de-convolution of unknown input in a class of coprime multi-channel systems applicable to non-invasive estimation of central aortic blood pressure. A multi-channel system yields multiple outputs in response to a common input. Hence, the relationship between any pair of two outputs constitutes a hypothetical input-output system with unknown input embedded as a state. The central idea underlying our approach is to derive the unknown input by designing an observer for the hypothetical input-output system. In this paper, we developed an unknown input observer (UIO) for input de-convolution in coprime multi-channel systems. We provide a universal design algorithm as well as meaningful physical insights and inherent performance limitations associated with the algorithm. The validity and potential of our approach was illustrated using a case study of estimating central aortic blood pressure waveform from two non-invasively acquired peripheral arterial pulse waveforms. The UIO could reduce the root-mean-squared error associated with the central aortic blood pressure by up to 27.5% and 28.8% against conventional inverse filtering and peripheral arterial pulse scaling techniques.
more »
« less
Laser-Based Noncontact Blood Pressure Estimation Using Human Body Displacement Waveforms
Measurement of the body's displacement at multiple positions allows heart pulse wave propagation to be observed; this is an important step toward noncontact blood pressure measurement. This study investigates the feasibility of performing blood pressure measurements using skin displacement waveforms measured at two positions on a human body. To evaluate the accuracy of the proposed approach, this study uses a pair of laser displacement sensors to enable precise pulse transit time measurement. By comparing the displacement waveforms from the two sensors, the relationship between pulse transit time and blood pressure was evaluated. It is demonstrated experimentally that the blood pressure can be estimated with accuracy of 5.1 mmHg, which is equivalent to the error of an ordinary cuff-type blood pressure monitor.
more »
« less
- Award ID(s):
- 2039089
- PAR ID:
- 10357302
- Date Published:
- Journal Name:
- 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022
- Page Range / eLocation ID:
- 1020 to 1022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we demonstrate an adjustable microfluidic tactile sensor for measurement of post-exercise response of local arterial parameters. The sensor entailed a polydimethylsiloxane (PDMS) microstructure embedded with a 5×1 resistive transducer array. The pulse signal in an artery deflected the microstructure and registered as a resistance change by the transducer aligned at the artery. PDMS layers of different thicknesses were added to adjust the microstructure thickness for achieving good sensor-artery conformity at the radial artery (RA) and the carotid artery (CA). Pulse signals of nine (n=9) young healthy male subjects were measured at-rest and at different times post-exercise, and a medical instrument was used to simultaneously measure their blood pressure and heart rate. Vibration-model-based analysis was conducted on a measured pulse signal to estimate local arterial parameters: elasticity, viscosity, and radius. The arterial elasticity and viscosity increased, and the arterial radius decreased at the two arteries 1min post-exercise, relative to at-rest. The changes in pulse pressure (PP) and mean blood pressure (MAP) between at-rest and 1min post-exercise were not correlated with that of heart rate and arterial parameters. After the large 1min post-exercise response, the arterial parameters and PP all went back to their at-rest values over time post-exercise.Clinical Relevance— The study results show the potential application of an affordable, user-friendly device for a more comprehensive arterial health assessment.more » « less
-
Abstract This study examines radial and axial displacement of the arterial wall under the influence of harmonics and wave reflection for the role of axial wall displacement in pulsatile wave propagation. The arterial wall is modeled as an initially-tensioned thin-walled orthotropic tube. In conjunction with three pulsatile parameters in blood flow, a free wave propagation analysis is conducted on the governing equations of the arterial wall and no-slip conditions at the blood-wall interface to obtain the frequency equation and pulsatile parameter expressions under different harmonics. The influence of wave reflection is then added to pulsatile parameter expressions. With the harmonic values of measured pulsatile pressure and blood flow rate at the ascending aorta in the literature, the waveforms of radial wall displacement, axial wall displacement, and wall shear stress are calculated under different orthotropicity and axial initial tension. The developed theory and calculated results indicate that (1) difference in waveform between blood flow rate, wall shear stress, and axial wall displacement is caused by harmonics, rather than wave reflection; (2) Axial wall displacement does not affect blood flow rate, radial wall displacement, and wall shear stress; (3) Besides wall shear stress, radial wall displacement gradient also contributes to axial wall displacement and its contribution is adjusted by axial initial tension; (4) different wave reflections only noticeably affect the maximum and minimum values of wall shear stress; and (5) The amplitude and waveform of axial wall displacement are predominantly dictated by axial elasticity and axial initial tension, respectively.more » « less
-
Soft objects squeezing through small apertures are crucial for many in vivo and in vitro processes. Red blood cell transit time through splenic inter-endothelial slits (IESs) plays a crucial role in blood filtration and disease progression, while droplet velocity through constrictions in microfluidic devices is important for effective manipulation and separation processes. As these transit phenomena are not well understood, we sought to establish analytical and numerical solutions of viscous droplet transit through a rectangular slit. This study extends from our former theory of a circular pore because a rectangular slit is more realistic in many physiological and engineering applications. Here, we derived the ordinary differential equations (ODEs) of a droplet passing through a slit by combining planar Poiseuille flow, the Young–Laplace equations, and modifying them to consider the lubrication layer between the droplet and the slit wall. Compared to the pore case, we used the Roscoe solution instead of the Sampson one to account for the flow entering and exiting a rectangular slit. When the surface tension and lubrication layer were negligible, we derived the closed-form solutions of transit time. When the surface tension and lubrication layer were finite, the ODEs were solved numerically to study the impact of various parameters on the transit time. With our solutions, we identified the impact of prescribed pressure drop, slit dimensions, and droplet parameters such as surface tension, viscosity, and volume on transit time. In addition, we also considered the effect of pressure drop and surface tension near critical values. For this study, critical surface tension for a given pressure drop describes the threshold droplet surface tension that prevents transit, and critical pressure for a given surface tension describes the threshold pressure drop that prevents transit. Our solutions demonstrate that there is a linear relationship between pressure and the reciprocal of the transit time (referred to as inverse transit time), as well as a linear relationship between viscosity and transit time. Additionally, when the droplet size increases with respect to the slit dimensions, there is a corresponding increase in transit time. Most notably, we emphasize the initial antagonistic effect of surface tension which resists droplet passage but at the same time decreases the lubrication layer, thus facilitating passage. Our results provide quantitative calculations for understanding cells passing through slit-like constrictions and designing droplet microfluidic experiments.more » « less
-
Abstract Given the wide utility of radial vibration of the arterial wall for clinical values, this paper presents a theoretical study on the relations of radial vibration of the arterial wall to pulsatile parameters in blood flow. Pulse wave propagation in an artery is formulated as a combination of the governing equations of blood flow and the arterial wall and no-slip conditions at the blood-wall interface and is analyzed to obtain the wave velocity and the theoretical expressions for blood flow rate and radial wall displacement in terms of pulsatile pressure. With the harmonics of a pulse signal, theoretical relations of radial vibration of the arterial wall to pulsatile parameters in blood flow are derived under two conditions: without and with wave reflection. These theoretical relations identify the assumptions for the simplified relations employed in the utility of radial vibration of the arterial wall for clinical values. With the arterial wall treated as a unit-mass vibration system, these simplified relations are utilized for extraction of arterial indices from radial vibration of the arterial wall. Other applications of such relations for clinical values are discussed, and the interaction between the arterial wall and blood flow is further revealed from the perspective of energy and one-dimensional wave equations. With harmonics and wave reflection considered, the derived theoretical expressions for radial wall vibration, pulsatile parameters in blood flow, and the relations between them provide theoretical guidance for improving their interpretation of clinical values with clearly defined physiological implications and assumptions.more » « less
An official website of the United States government

