Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca are isoelectronic substitutions, the changes in properties are attributed to changes in the electronic structure. Both solid solutions show that the thermal conductivities remain extremely low (∼0.4 W m −1 K −1 ) and that the Seebeck coefficients remain high (>200 μV K −1 ). The temperature dependence of the carrier mobility with increased Ca substitution, changing from approximately T −1 to T −0.5 , suggests that another scattering mechanism is being introduced. As the bonding changes from polar covalent with Yb to ionic for Ca, polar optical phonon scattering becomes the dominant mechanism. Experimental studies of the Cd solid solutions result in a max zT of ∼1 at 800 K and, more importantly for application purposes, a ZT avg ∼ 0.6 from 300 K to 800 K.
more »
« less
Engineering thermoelectric and mechanical properties by nanoporosity in calcium cobaltate films from reactions of Ca(OH) 2 /Co 3 O 4 multilayers
Controlling nanoporosity to favorably alter multiple properties in layered crystalline inorganic thin films is a challenge. Here, we demonstrate that the thermoelectric and mechanical properties of Ca 3 Co 4 O 9 films can be engineered through nanoporosity control by annealing multiple Ca(OH) 2 /Co 3 O 4 reactant bilayers with characteristic bilayer thicknesses (b t ). Our results show that doubling b t , e.g. , from 12 to 26 nm, more than triples the average pore size from ∼120 nm to ∼400 nm and increases the pore fraction from 3% to 17.1%. The higher porosity film exhibits not only a 50% higher electrical conductivity of σ ∼ 90 S cm −1 and a high Seebeck coefficient of α ∼ 135 μV K −1 , but also a thermal conductivity as low as κ ∼ 0.87 W m −1 K −1 . The nanoporous Ca 3 Co 4 O 9 films exhibit greater mechanical compliance and resilience to bending than the bulk. These results indicate that annealing reactant multilayers with controlled thicknesses is an attractive way to engineer nanoporosity and realize mechanically flexible oxide-based thermoelectric materials.
more »
« less
- Award ID(s):
- 2135725
- PAR ID:
- 10357436
- Date Published:
- Journal Name:
- Nanoscale Advances
- Volume:
- 4
- Issue:
- 16
- ISSN:
- 2516-0230
- Page Range / eLocation ID:
- 3353 to 3361
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We constructed the magnetic field-temperature phase diagrams of new quasi-two-dimensional isosceles triangular lattice antiferromagnets (TLAF) Ca 3 MNb 2 O 9 (M=Co, Ni) from dc and ac magnetic susceptibilities, specific heat, dielectric constant, and electric polarization measurements on single crystalline samples. Ca 3 CoNb 2 O 9 with effective spin-1/2 Co 2+ ions undergoes a two-step antiferromagnetic phase transition at T N1 = 1.3 K and T N2 = 1.5 K and enters a stripe ordered state at zero magnetic field. With increasing field, successive magnetic phase transitions, reminiscent of the up-up-down ( uud ) and the oblique phases, are observed. The dielectric constant of Ca 3 CoNb 2 O 9 shows anomalies related to the magnetic phase transitions, but clear evidence of ferroelectricity is absent. Meanwhile, Ca 3 NiNb 2 O 9 with spin-1 Ni 2+ ions also shows a two-step antiferromagnetic transition at T N1 = 3.8 K and T N2 = 4.2 K at zero field. For Ca 3 NiNb 2 O 9 , the electric polarization in the magnetic ordered phases was clearly observed from the pyroelectric current measurements, which indicates its coexistence of magnetic ordering and ferroelectricity.more » « less
-
In this work, the structural and electrical properties of metalorganic chemical vapor deposited Si-doped β-(Al x Ga 1−x ) 2 O 3 thin films grown on (010) β-Ga 2 O 3 substrates are investigated as a function of Al composition. The room temperature Hall mobility of 101 cm 2 /V s and low temperature peak mobility (T = 65 K) of 1157 cm 2 /V s at carrier concentrations of 6.56 × 10 17 and 2.30 × 10 17 cm −3 are measured from 6% Al composition samples, respectively. The quantitative secondary ion mass spectroscopy (SIMS) characterization reveals a strong dependence of Si and other unintentional impurities, such as C, H, and Cl concentrations in β-(Al x Ga 1−x ) 2 O 3 thin films, with different Al compositions. Higher Al compositions in β-(Al x Ga 1−x ) 2 O 3 result in lower net carrier concentrations due to the reduction of Si incorporation efficiency and the increase of C and H impurity levels that act as compensating acceptors in β-(Al x Ga 1−x ) 2 O 3 films. Lowering the growth chamber pressure reduces Si concentrations in β-(Al x Ga 1−x ) 2 O 3 films due to the increase of Al compositions as evidenced by comprehensive SIMS and Hall characterizations. Due to the increase of lattice mismatch between the epifilm and substrate, higher Al compositions lead to cracking in β-(Al x Ga 1−x ) 2 O 3 films grown on β-Ga 2 O 3 substrates. The (100) cleavage plane is identified as a major cracking plane limiting the growth of high-quality Si-doped (010) β-(Al x Ga 1−x ) 2 O 3 films beyond the critical thicknesses, which leads to highly anisotropic and inhomogeneous behaviors in terms of conductivity.more » « less
-
The inverse spinel ferrimagnetic NiCo2O4possesses high magnetic Curie temperature TC, high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo2O4thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo2O4films on MgAl2O4substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while TCfor 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity [Formula: see text] and its scaling relation with the longitudinal conductivity ([Formula: see text]) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo2O4.more » « less
-
Abstract One-dimensional c -axis-aligned BaZrO 3 (BZO) nanorods are regarded as strong one-dimensional artificial pinning centers (1D-APCs) in BZO-doped YaBa 2 Cu 3 O 7− x (BZO/YBCO) nanocomposite films. However, a microstructure analysis has revealed a defective, oxygen-deficient YBCO column around the BZO 1D-APCs due to the large lattice mismatch of ∼7.7% between the BZO (3a = 1.26 nm) and YBCO (c = 1.17 nm), which has been blamed for the reduced pinning efficiency of BZO 1D-APCs. Herein, we report a dynamic lattice enlargement approach on the tensile strained YBCO lattice during the BZO 1D-APCs growth to induce c -axis elongation of the YBCO lattice up to 1.26 nm near the BZO 1D-APC/YBCO interface via Ca/Cu substitution on single Cu-O planes of YBCO, which prevents the interfacial defect formation by reducing the BZO/YBCO lattice mismatch to ∼1.4%. Specifically, this is achieved by inserting thin Ca 0.3 Y 0.7 Ba 2 Cu 3 O 7− x (CaY-123) spacers as the Ca reservoir in 2–6 vol.% BZO/YBCO nanocomposite multilayer (ML) films. A defect-free, coherent BZO 1D-APC/YBCO interface is confirmed in transmission electron microscopy and elemental distribution analyses. Excitingly, up to five-fold enhancement of J c ( B ) at magnetic field B = 9.0 T// c -axis and 65 K–77 K was obtained in the ML samples as compared to their BZO/YBCO single-layer (SL) counterpart’s. This has led to a record high pinning force density F p together with significantly enhanced B max at which F p reaches its maximum value F p,max for BZO 1D-APCs at B // c -axis. At 65 K, the F p,max ∼158 GN m −3 and B max ∼ 8.0 T for the 6% BZO/YBCO ML samples represent a significant enhancement over F p,max ∼ 36.1 GN m −3 and B max ∼ 5.0 T for the 6% BZO/YBCO SL counterparts. This result not only illustrates the critical importance of a coherent BZO 1D-APC/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO 1D-APCs.more » « less