skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Why Bother? Environmental and Social Implications of Using Durable Building Products
The circular economy (CE) has emerged with the promise of conserving resources through approaches such as durability and extended product lifetimes. At the same time, buildings negatively contribute to resource use and waste production, making buildings a key target for CE strategies. However, the question of how durability and lifetimes affect the social and environmental impacts of building products remains largely unexplored. In this study, we applied environmental and social life cycle assessments (E-LCA and S-LCA, respectively) to a common building component, roof covering, to investigate the effects of durability and different lifespans, and the tradeoffs between social and environmental impacts. We tested different lifespan scenarios for three materials with different durability: thermoplastic polyolefin (TPO), zinc-coated steel, and galvanized aluminum sheets. The results suggest that it is critical to consider the tradeoffs of social and environmental benefits: steel had the most promising social performance, followed closely by aluminum, while the least durable material (TPO) had the worst environmental and social performance. However, the environmental impacts resulting from the production of aluminum sheets were significantly lower than the impacts from steel, which made aluminum the preferred choice for this case study. Moreover, product lifespans impacted the results in both E-LCA and S-LCA due to the number of replacements needed over the life of a 100- year building. We discuss key limitations of integrating E-LCA and S-LCA approaches, such as data aggregation and spatial issues, lack of standards on how to account for product durability, and concerns surrounding S-LCA results interpretation.  more » « less
Award ID(s):
1934824
PAR ID:
10357731
Author(s) / Creator(s):
Date Published:
Journal Name:
4th PLATE 2021 Virtual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Life Cycle Analysis (LCA) has long been utilized for decision making about the sustainability of products. LCA provides information about the total emissions generated for a given functional unit of a product, which is utilized by industries or consumers for comparing two products with regards to environmental performance. However, many existing LCAs utilize data that is representative of an average system with regards to life cycle stage, thus providing an aggregate picture. It has been shown that regional variation may lead to large variation in the environmental impacts of a product, specifically dealing with energy consumption, related emissions and resource consumptions. Hence, improving the reliability of LCA results for decision making with regards to environmental performance needs regional models to be incorporated for building a life cycle inventory that is representative of the origin of products from a certain region. In this work, we present the integration of regionalized data from process systems models and other sources to build regional LCA models and quantify the spatial variations per unit of biodiesel produced in the state of Indiana for environmental impact. In order to include regional variation, we have incorporated information about plant capacity for producing biodiesel from North and Central Indiana. The LCA model built is a cradle-to-gate. Once the region-specific models are built, the data were utilized in SimaPro to integrate with upstream processes to perform a life cycle impact assessment (LCIA). We report the results per liter of biodiesel from northern and central Indiana facilities in this work. The impact categories studied were global warming potential (kg CO2 eq) and freshwater eutrophication (kg P eq). While there were a lot of variations at individual county level, both regions had a similar global warming potential impact and the northern region had relatively lower eutrophication impacts. 
    more » « less
  2. Abstract Meeting the United Nations (UN) sustainable development goals efficiently requires designers and engineers to solve multi-objective optimization problems involving trade-offs between social, environmental, and economical impacts. This paper presents an approach for designers and engineers to quantify the social and environmental impacts of a product at a population level and then perform a trade-off analysis between those impacts. In this approach, designers and engineers define the attributes of the product as well as the materials and processes used in the product’s life cycle. Agent-based modeling (ABM) tools that have been developed to model the social impacts of products are combined with life cycle assessment (LCA) tools that have been developed to evaluate the pressures that different processes create on the environment. Designers and engineers then evaluate the trade-offs between impacts by finding non-dominated solutions that minimize environmental impacts while maximizing positive and/or minimizing negative social impacts. Product adoption models generated by ABM allow designers and engineers to approximate population level environmental impacts and avoid Simpson’s paradox, where a reversal in choices is preferred when looking at the population level impacts versus the individual product-level impacts. This analysis of impacts has the potential to help designers and engineers create more impactful products that aid in reaching the UN sustainable development goals. 
    more » « less
  3. Abstract As the building sector faces global challenges that affect urban supplies of food, water and energy, multifaceted sustainability solutions need to be re-examined through the lens of built environments. Aquaponics, a strategy that combines recirculating aquaculture with hydroponics to optimize fish and plant production, has been recognized as one of "ten technologies which could change our lives" by merit of its potential to revolutionize how we feed urban populations. To holistically assess the environmental performance of urban aquaponic farms, impacts generated by aquaponic systems must be combined with impacts generated by host envelopes. This paper outlines the opportunities and challenges of using life cycle assessment (LCA) to evaluate and design urban aquaponic farms. The methodology described here is part of a larger study of urban integration of aquaponics conducted by the interdisciplinary research consortium CITYFOOD. First, the challenges of applying LCA in architecture and agriculture are outlined. Next, the urban aquaponic farm is described as a series of unit process flows. Using the ISO 14040:2006 framework for developing an LCA, subsequent LCA phases are described, focusing on scenario-specific challenges and tools. Particular attention is given to points of interaction between growing systems and host buildings that can be optimized to serve both. Using a hybrid LCA framework that incorporates methods from the building sector as well as the agricultural sector, built environment professionals can become key players in interdisciplinary solutions for the food-water-energy nexus and the design of sustainable urban food systems. 
    more » « less
  4. Life cycle impact assessment (LCA) provides a better understanding of the energy, water, and material input and evaluates any production system’s output impacts. LCA has been carried out on various crops and products across the world. Some countries, however, have none or only a few studies. Here, we present the results of a literature review, following the PRISMA protocol, of what has been done in LCA to help stakeholders in these regions to understand the environmental impact at different stages of a product. The published literature was examined using the Google Scholar database to synthesize LCA research on agricultural activities, and 74 studies were analyzed. The evaluated papers are extensively studied in order to comprehend the various impact categories involved in LCA. The study reveals that tomatoes and wheat were the major crops considered in LCA. The major environmental impacts, namely, human toxicity potential and terrestrial ecotoxicity potential, were the major focus. Furthermore, the most used impact methods were CML, ISO, and IPCC. It was also found that studies were most often conducted in the European sector since most models and databases are suited for European agri-food products. The literature review did not focus on a specific region or a crop. Consequently, many studies appeared while searching using the keywords. Notwithstanding such limitations, this review provides a valuable reference point for those practicing LCA. 
    more » « less
  5. The increasing volume of electronic waste (e-waste) creates significant environmental and economic challenges which demands practical management strategies. Life Cycle Assessment (LCA) has been known as a principal tool for evaluating the environmental impact of e-waste recycling and disposal methods. However, its application is hampered by inconsistencies in methodology, data limitations, and variations in system boundaries. This study provides a review of current LCA tools used in e-waste analysis and identifies gaps and opportunities for improvement. It categorizes studies into three groups: studies that applied LCA to product and process optimization, impact evaluation, and policy development. Findings reveal that LCA has been helpful in assessing the sustainability of different recycling strategies. However, significant variations exist in methodological approaches and data accuracy. Challenges such as the lack of standardized LCA protocols, the limited availability of regionspecific impact data, and inconsistencies in assessment methodologies are still barriers to its widespread adoption. Finally, the study discusses emerging trends in LCA aimed at addressing current gaps, including the incorporation of machine learning and artificial intelligence for predictive modeling, dynamic impact assessment frameworks, and the role of real-time data collection via IoT-based sensors. 
    more » « less