Measuring strike and dip is a common but complicated spatial task introduced to students in undergraduate geology courses. Students must employ multiple spatial reasoning skills in addition to geology-specific content knowledge. These spatial skills include disembedding - to recognize a suitable bedding or foliation plane to measure, spatial perception - to understand the plane’s relationship to horizontal and vertical, and aspects of spatial visualization, perspective taking, and mental rotation to determine how to position and read the compass tool. We tested a virtual reality (VR) training module to help teach the use of the compass tool to measure strike and dip. Students in a large introductory course in a public university were placed by lab section into either a “standard” classroom instruction or VR instruction for their initial training, then all completed a simplified mapping exercise in which they measured five planes set up around the classroom. Pre and post tests of spatial skills and scores on the measurement portion of the map assignment were collected and compared between the 2 types of training groups. Of 12 lab sections, half were assigned to VR and the other half to standard. The instructional assistants each taught at least one section of each type, and the instruction types were distributed evenly across the scheduled lab times. The VR group showed 11% higher improvement scores on the Water Level Task (WLT) compared to the standard group (p = 0.008, n=159). Because students in some lab sections had identical responses to the strike and dip task, we used a subset of four lab sections in which students submitted unique responses (n=41). We found no significant differences on the strike and dip task except with application of the right hand rule (RHR). The classroom instruction group performed 26% higher on the strike task when the RHR was taken into account (p = 0.006), but this difference does not persist when scoring is agnostic to the RHR. The VR module contains only a text explanation of the RHR. These results suggest that VR is at least as good as classroom instruction for building geology skills and, through targeted instruction, can significantly impact performance on a spatial test. Feedback on the VR activity will be used to further refine the module and develop best practice strategies for VR spatial training.
more »
« less
USING VR TO TRAIN SPATIAL PERCEPTION: A PILOT STUDY WITH THE WATER LEVEL TASK
Spatial reasoning skills have been linked to success in STEM and are considered an important part of geoscience problem solving. Most agree that these are a group of skills rather than a single ability, though there is no agreement on the full list of constituent skills. Few studies have attempted to isolate specific spatial skills for deliberate training. We conducted an experiment to isolate and train the skill of recognizing horizontal (a crucial component in measuring the orientation of planes) using a dedicated Virtual Reality (VR) module. We recruited 21 undergraduate students from natural science and social science majors for the study, which consisted of a pretest, 15-minute training, and posttest. The pre- and posttests consisted of a short multiple choice vocabulary quiz, 5 hand-drawn and 5 multiple choice Water Level Task (WLT) questions, and the Vandenberg and Kuse Mental Rotation Task (MRT). Participants were sorted based on pre-test Water Level Task scores, only those with scores <80% were placed in an intervention group and randomly assigned to training, either in VR (experimental) or on paper (standard), of about 15 minutes. The high-scoring participants received no training (comparison). All three groups of participants completed a posttest after the training (if any). After removing three participants who did not return for the posttest session, we had 18 participants in total: 6 in VR, 7 in the comparison group, and 5 in the standard group. Repeated measures ANOVA of the pre to post hand-drawn WLT scores shows at least one group is different (p=.002) and Tukey’s Post-Hoc analysis indicates that the VR group improved significantly more that the high-scoring comparison group (Mean Difference = -1.857, p = .001) and the standard group (Mean Difference = -1.200, p = .049). While any significant result is encouraging, a major limitation of this study is the small sample size and unequal variances on both the pretest (Levene’s HOV test, F = 7.50, p = .006) and posttest (F = 13.53, p < .001), despite random assignment. More trials are needed to demonstrate reproducibility. While more tests are needed, this preliminary study shows the potential benefit of VR in training spatial reasoning skills.
more »
« less
- Award ID(s):
- 2125377
- PAR ID:
- 10357744
- Date Published:
- Journal Name:
- Abstracts with programs
- Volume:
- 52
- Issue:
- 5
- ISSN:
- 0016-7592
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
How does the conceptual structure of external representations contribute to learning? This investigation considered the influence of generative concept sorting (Study 1, n=58) and of external structure information (Study 2, n=120) moderated by perceived difficulty. In Study 1, undergraduate students completed a perceived difficulty survey and comprehension pretest, then a sorting task, and finally a comprehension posttest. Results showed that both perceived difficulty and comprehension pretest significantly predicted comprehension posttest performance. Learners who perceived that history is difficult attained significantly greater posttest scores and had more expert-like networks. In Study 2, participants completed the perceived difficulty survey and comprehension pretest, then read a text with different external structure support, either an expert network or an equivalent outline of the text, and finally completed a sorting task posttest and a comprehension posttest. In study 2, there was no significant difference for external structure support on posttest comprehension (outline = network), but reading with an outline led to a linear topic order conceptual structure of the text, while reading with a network led a more expert-like relational structure. As in Study 1, comprehension pretest and perceived difficulty significantly predicted posttest performance, but in contrast to Study 1, learners who perceived that history is easy attained significantly greater posttest scores. For theory building purposes, post-reading mental representations matched the form of the external representation used when reading. Practitioners should consider using generative sorting tasks when relearning history content.more » « less
-
Response time on math skills and its association with math skills accuracy and physics course gradesAccuracy on assessments is commonly studied in education research but response time (RT) is relatively less investigated even though decades of research in cognitive sciences indicate that time can be an important dimension for understanding student learning. To better understand RT and the potentially important relations between accuracy and RT in physics education, we conducted an exploratory investigation by collecting and analyzing both accuracy and RT data on physics-relevant math skills on low-stakes pre and posttests as well as course exam scores in algebra-based and calculus-based introductory physics courses over two semesters for a total of participants. Overall, we found a high level of variation in response times revealing weak but consistent patterns of associations between RT and accuracy on skills and exam scores. First, we found a nonlinear relationship between RT and accuracy on the pretest and on the post-test, which may indicate a variety of strategies and engagement among students on these participation-credit-only tests. Second, the results indicate that while RT alone does not predict course grade, when controlling for accuracy on pre or posttest math skills, students with lower RT on these skills are more likely to get better grades. Therefore, both pre or posttest accuracy and speed predicted course grades, though accuracy explained a substantial amount of variance ( ) while pretest RT explained a much smaller amount of variance ( ). Third, controlling for both pretest accuracy and pretest RT, we found that students who sped up from pre to posttest were likely to get higher exam scores; however, students who slowed down were on average likely to have a higher post-test score. Fourth, since systemic inequities in STEM education have been documented via measured mean differences between some demographic groups for exam scores and accuracy on math skills, we compared RTs by sex, race, first-generation status, and citizenship to potentially gain more insight into these inequities. We found no consistent or conclusive evidence of demographic differences, though in multiple comparisons, Black, Hispanic, Native American, and Pacific Islander students had larger RTs on average, and in one comparison they were slightly faster. We found that RT was not a mediator of demographic differences in physics grades, though, as expected, accuracy on math skills was a mediator. We briefly discuss how our results relate to various cognitive models such as cognitive ability, speed-accuracy trade-offs, fluency and cognitive load, dual-process theories, and student psychological factors like self-efficacy, anxiety, and motivation. We argue that, based on which (if any) of the above mechanisms are at play, valuing speed in physics may have benefits, such as improving fluency to reduce cognitive load and drawbacks, such as unintentionally using speed as a proxy for achievement or inducing excessive stress that may interfere with performance and student well-being.more » « less
-
Past studies on the differential effects of active learning based on students’ prior preparation and knowledge have been mixed. The purpose of the present study was to ask whether students with different levels of prior preparation responded differently to laboratory courses in which a guided-inquiry module was implemented. In the first study, we assessed student scientific reasoning skills, and in the second we assessed student experimental design skills. In each course in which the studies were conducted, student gains were analyzed by pretest quartiles, a measure of their prior preparation. Overall, student scientific reasoning skills and experimental design skills did not improve pretest to posttest. However, when divided into quartiles based on pretest score within each course, students in the lowest quartile experienced significant gains in both studies. Despite the significant gains observed among students in the lowest quartile, significant posttest differences between lowest and highest quartiles were observed in both scientific reasoning skills and experimental design skills. Nonetheless, these findings suggest that courses with guided-inquiry laboratory activities can foster the development of basic scientific reasoning and experimental design skills for students who are least prepared across a range of course levels and institution types.more » « less
-
null (Ed.)Children’s math self-concepts—their beliefs about themselves and math—are important for teachers, parents, and students, because they are linked to academic motivation, choices, and outcomes. There have been several attempts at improving math achievement based on the training of math skills. Here we took a complementary approach and conducted an intervention study to boost children’s math self-concepts. Our primary objective was to assess the feasibility of whether a novel multicomponent intervention—one that combines explicit and implicit approaches to help children form more positive beliefs linking themselves and math—can be administered in an authentic school setting. The intervention was conducted in Spain, a country in which math achievement is below the average of other OECD countries. We tested third grade students ( N = 180; M age = 8.79 years; 96 girls), using treatment and comparison groups and pre- and posttest assessments. A novelty of this study is that we used both implicit and explicit measures of children’s math self-concepts. For a subsample of students, we also obtained an assessment of year-end math achievement. Math self-concepts in the treatment and comparison groups did not significantly differ at pretest. Students in the treatment group demonstrated a significant increase in math self-concepts from pretest to posttest; students in the comparison group did not. In the treatment group, implicit math self-concepts at posttest were associated with higher year-end math achievement, assessed approximately 3 months after the completion of the intervention. Taken together, the results suggest that math self-concepts are malleable and that social–cognitive interventions can boost children’s beliefs about themselves and math. Based on the favorable results of this feasibility study, it is appropriate to formally test this novel multicomponent approach for improving math self-concepts using randomized controlled trial (RCT) design.more » « less
An official website of the United States government

