skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Response time on math skills and its association with math skills accuracy and physics course grades
Accuracy on assessments is commonly studied in education research but response time (RT) is relatively less investigated even though decades of research in cognitive sciences indicate that time can be an important dimension for understanding student learning. To better understand RT and the potentially important relations between accuracy and RT in physics education, we conducted an exploratory investigation by collecting and analyzing both accuracy and RT data on physics-relevant math skills on low-stakes pre and posttests as well as course exam scores in algebra-based and calculus-based introductory physics courses over two semesters for a total of N = 1 9 3 6 participants. Overall, we found a high level of variation in response times revealing weak but consistent patterns of associations between RT and accuracy on skills and exam scores. First, we found a nonlinear relationship between RT and accuracy on the pretest and on the post-test, which may indicate a variety of strategies and engagement among students on these participation-credit-only tests. Second, the results indicate that while RT alone does not predict course grade, when controlling for accuracy on pre or posttest math skills, students with lower RT on these skills are more likely to get better grades. Therefore, both pre or posttest accuracy and speed predicted course grades, though accuracy explained a substantial amount of variance ( 35 % ) while pretest RT explained a much smaller amount of variance ( 1 % ). Third, controlling for both pretest accuracy and pretest RT, we found that students who sped up from pre to posttest were likely to get higher exam scores; however, students who slowed down were on average likely to have a higher post-test score. Fourth, since systemic inequities in STEM education have been documented via measured mean differences between some demographic groups for exam scores and accuracy on math skills, we compared RTs by sex, race, first-generation status, and citizenship to potentially gain more insight into these inequities. We found no consistent or conclusive evidence of demographic differences, though in multiple comparisons, Black, Hispanic, Native American, and Pacific Islander students had larger RTs on average, and in one comparison they were slightly faster. We found that RT was not a mediator of demographic differences in physics grades, though, as expected, accuracy on math skills was a mediator. We briefly discuss how our results relate to various cognitive models such as cognitive ability, speed-accuracy trade-offs, fluency and cognitive load, dual-process theories, and student psychological factors like self-efficacy, anxiety, and motivation. We argue that, based on which (if any) of the above mechanisms are at play, valuing speed in physics may have benefits, such as improving fluency to reduce cognitive load and drawbacks, such as unintentionally using speed as a proxy for achievement or inducing excessive stress that may interfere with performance and student well-being.  more » « less
Award ID(s):
2235621 1914709
PAR ID:
10643266
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Physics Education Research
Volume:
21
Issue:
1
ISSN:
2469-9896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    We conducted two studies to investigate the extent to which brief, spaced, mastery practice on skills relevant to introductory physics affects student performance. The first study investigated the effect of practice of “specific” physics skills, each one relevant to only one or a few items on the course exam. This study employed a quasiexperimental design with 766 students assigned to “intervention” or “control” conditions by lecture section sharing common exams. Results of the first study indicate significant improvement in the performance for only some of the exam items relevant to the specific skills practiced. We also observed between-section performance differences on other exam items not relevant to training, which may be due to specific prior quiz items from individual instructors. The second study investigated the effect of practice on the “general” skill of algebra relevant to introductory physics, a skill which was relevant to most of the exam items. This study employed a similar quasiexperimental design with 363 students assigned to treatment or control conditions, and we also administered a reliable pre- and post-test assessment of the algebra skills that was iteratively developed for this project. Results from the second study indicate that 75% of students had high accuracy on the algebra pretest. Students in the control condition who scored low on the pretest gained about 0.7 standard deviations on the post-test, presumably from engagement with the course alone, and students in the algebra practice condition had statistically similar gains, indicating no observed effect of algebra practice on algebra pre- to post-test gains. In contrast, we find some potential evidence that the algebra practice improved final exam performance for students with high pretest scores and did not benefit students with low pretest scores, although this result is inconclusive: the point estimate of the effect size was 0.24 for high pretest scoring students, but the 95% confidence interval [ 0.01 , 0.48] slightly overlapped with zero. Further, we find a statistically significant positive effect of algebra practice on exam items that have higher algebraic complexity and no effect for items with low complexity. One possible explanation for the added benefit of algebra practice for high-scoring students is fluency in algebra skills may have improved. Overall, our observations provide some evidence that spaced, mastery practice is beneficial for exam performance for specific and general skills, and that students who are better prepared in algebra may be especially benefitting from mastery practice in relevant algebra skills in terms of improved final exam performance. 
    more » « less
  2. [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] With the current growth in quantum information science and technology (QIST), there is an increasing need to prepare precollege students for postsecondary QIST study and careers. This mixed methods, explanatory sequential research focused on students’ affective outcomes from a one-week, 25-h summer program for U.S. high school students in grades 10–12. The workshop structure was based upon psychosocial theories of self-determination and planned behavior, where QIST aspirations may be facilitated and viewed as achievable choices if students acquire disciplinary knowledge, self-efficacy, normative expectancy of their capacity in the field, and awareness of vocational roles. The program featured lectures, demonstrations, and hands-on experiences in classical and quantum physics and quantum computing. Students’ attitudes toward QIST ( N = 7 7 )—including self-efficacy, self-concept, relevance, career aspirations, and perceptions of quantitative fluency—showed improvement with a medium effect size, even though treatment students entered the program with more positive QIST attitudes when compared with a control group of high school physics students ( N = 6 5 ). Postprogram interviews with n = 1 2 participants identified several explanatory themes: (i) Students tended to comprehend classical and quantum topics taught through multiple representations, regardless of whether they had taken physics previously; (ii) students experienced some challenges with mathematics and science concepts that support quantum understanding, yet they revealed a willingness to learn new concepts outside of their comfort zone; (iii) students expressed motivation for pursuing science, technology, engineering, and mathematics and/or quantum-related careers in the future, as well as increased QIST self-concept, largely through understanding the relevance of QIST in solving technological problems; and (iv) students reported increased self-efficacy in understanding QIST topics and performing related tasks. This informal summer program showed promise in promoting positive student attitudes toward QIST, a critical emerging field in advancing technological solutions for global challenges. Published by the American Physical Society2024 
    more » « less
  3. Abstract The evolution of bed shear stress in open-channel flow due to a sudden change in bed roughness was investigated experimentally for rough-to-smooth (RTS) and smooth-to-rough (STR) transitions. The velocity field was measured in the longitudinal-vertical plane from upstream to downstream using a Particle Image Velocimetry system. The bed shear stress was determined from the measured velocity profile and water depth using various methods. It was found that the variation of bed shear stress in gradually varied flow through a roughness transition was influenced by both flow depth and bottom roughness. In both RTS and STR transitions, the bed shear stress adjusted to the new bed condition almost immediately even though the velocity profile away from the bed was still evolving, but unlike external and close-conduit flows the bed shear stress in open-channel flows continued to evolve until the flow depth was uniform. It is shown that the evolution of bed shear stress in a STR transition is dependent on the choice of the displacement height on the rough bed, which affects the mixing length used to derive the logarithmic velocity profile and equivalent roughness. Bed shear stress variation consistent with published data was obtained when the$${k}_{s}/{d}_{90}$$ k s / d 90 ratio was determined as a function of the$$h/{d}_{90}$$ h / d 90 ratio, where$${k}_{s}$$ k s is the equivalent roughness height,$$h$$ h is the flow depth, and$${d}_{90}$$ d 90 is the grain diameter with 90% of finer particles. 
    more » « less
  4. One expected outcome of physics instruction is that students develop quantitative reasoning skills, including strategies for evaluating solutions to problems. Examples of well-known “canonical” evaluation strategies include special case analysis, unit analysis, and checking for reasonable numbers. We report on responses from three tasks in different physics contexts prompting students in an introductory calculus-based physics sequence to evaluate expressions for various quantities: the velocity of a block at the bottom of an incline with friction, the final velocities of two masses involved in an elastic collision, and the electric field due to three point charges. Responses from written ( N = 5 8 0 ) and interview ( N = 1 8 ) data were analyzed using modified grounded theory and phenomenology. We also employed the analytical framework of epistemic frames. Students’ evaluation strategies were classified into three broad categories: consulting external sources, checking through computation, and comparing to the physical world. Some of the evaluation strategies observed in our data, including canonical as well as noncanonical strategies, have been reported in prior research on evaluation, albeit sometimes with different names and with varying levels of generalizability. We note four major, general observations prompted by our results. First, most students did not evaluate solutions to physics problems using an approach that an expert would consider an evaluation strategy. Second, many students used evaluation strategies that emphasized computation. Third, many students used evaluation strategies that are not canonical but are nonetheless useful. Fourth, the relative prevalence of different strategies was highly dependent on the task context. We conclude with remarks including implications for classroom instruction. 
    more » « less
  5. Quantum sensors have notably advanced high-sensitivity magnetic field detection. Here, we report quantum sensors constructed from polarized spin-triplet electrons in photoexcited organic chromophores, specifically focusing on pentacene-doped para-terphenyl ( 0.1 % ) . We demonstrate essential quantum sensing properties at room temperature (RT): optically generated electronic polarization and state-dependent fluorescence contrast by leveraging differential pumping and relaxation rates between triplet and ground states. We measure high optically detected magnetic resonance contrast 16.8 % of the triplet states at RT, along with long coherence times under spin echo and Carr-Purcell-Meiboom-Gill (CPMG) sequences, T 2 = 2.7 µ s and T 2 DD = 18.4 µ s , respectively, limited only by the triplet lifetimes. The material offers several advantages for quantum sensing, including the ability to grow large (cm scale) crystals at low cost, absence of paramagnetic impurities, and electronic diamagnetism when not optically illuminated. Utilizing pentacene as a representative of a broader class of spin triplet- polarizable organic molecules, this paper highlights the potential for quantum sensing in chemical systems. 
    more » « less