skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acoustic and postural displays in a miniature and transparent teleost fish, Danionella dracula
ABSTRACT Acoustic behavior is widespread across vertebrates, including fishes. We report robust acoustic displays during aggressive interactions for a laboratory colony of Danionella dracula, a miniature and transparent species of teleost fish closely related to zebrafish (Danio rerio), which are hypothesized to be sonic based on the presence of a hypertrophied muscle associated with the male swim bladder. Males produce bursts of pulsatile sounds and a distinct postural display – extension of a hypertrophied lower jaw, a morphological trait not present in other Danionella species – during aggressive but not courtship interactions. Females show no evidence of sound production or jaw extension in such contexts. Novel pairs of size-matched or -mismatched males were combined in resident–intruder assays where sound production and jaw extension could be linked to individuals. In both dyad contexts, resident males produced significantly more sound pulses than intruders. During heightened sonic activity, the majority of the highest sound producers also showed increased jaw extension. Residents extended their jaw more than intruders in size-matched but not -mismatched contexts. Larger males in size-mismatched dyads produced more sounds and jaw extensions compared with their smaller counterparts, and sounds and jaw extensions increased with increasing absolute body size. These studies establish D. dracula as a sonic species that modulates putatively acoustic and postural displays during aggressive interactions based on residency and body size, providing a foundation for further investigating the role of multimodal displays in a new model clade for neurogenomic and neuroimaging studies of aggression, courtship and other social interactions.  more » « less
Award ID(s):
1656664 1457108
PAR ID:
10357833
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
225
Issue:
16
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Synopsis Sound production in tiger moths (Erebidae: Arctiinae) plays a role in natural selection. Some species use tymbal sounds as jamming signals avoiding bat predation. High duty cycle signals have the greatest efficacy in this regard. Tiger moth sounds can also be used for intraspecific communication. Little is known about the role of sound in the mating behavior of jamming species or the signal preferences underlying mate choice. We recorded sound production during the courtship of two high duty cycle arctiines, Bertholdia trigona and Carales arizonensis. We characterized variation in their acoustic signals, measured female preference for male signals that vary in duty cycle, and performed female choice experiments to determine the effect of male duty cycle on the acceptance of male mates. Although both species produced sound during courtship, the role of acoustic communication appears different between the species. Bertholdia trigona was acoustically active in all intraspecific interactions. Females preferred and ultimately mated with males that produced higher duty cycles. Muted males were never chosen. In C. arizonensis however, sound emissions were limited during courtship and in some successful matings no sound was detected. Muted and clicking males were equally successful in female mate-choice experiments, indicating that acoustic communication is not essential for mating in C. arizonensis. Our results suggest that in B. trigona natural and sexual selection may work in parallel, to favor higher duty cycle clicking. 
    more » « less
  2. Abstract Vocalizations communicate information indicative of behavioural state across divergent social contexts. Yet, how brain regions actively pattern the acoustic features of context-specific vocal signals remains largely unexplored. The midbrain periaqueductal gray (PAG) is a major site for initiating vocalization among mammals, including primates. We show that PAG neurons in a highly vocal fish species (Porichthys notatus) are activated in distinct patterns during agonistic versus courtship calling by males, with few co-activated during a non-vocal behaviour, foraging. Pharmacological manipulations within vocally active PAG, but not hindbrain, sites evoke vocal network output to sonic muscles matching the temporal features of courtship and agonistic calls, showing that a balance of inhibitory and excitatory dynamics is likely necessary for patterning different call types. Collectively, these findings support the hypothesis that vocal species of fish and mammals share functionally comparable PAG nodes that in some species can influence the acoustic structure of social context-specific vocal signals. 
    more » « less
  3. While thought to be widely used for animal communication, substrate-borne vibration is relatively unexplored compared to other modes of communication. Substrate-borne vibrations are important for mating decisions in many orthopteran species, yet substrate-borne vibration has not been documented in the Pacific field cricket Teleogryllus oceanicus . Male T. oceanicus use wing stridulation to produce airborne calling songs to attract females and courtship songs to entice females to mate. A new male morph has been discovered, purring crickets, which produce much quieter airborne calling and courtship songs than typical males. Purring males are largely protected from a deadly acoustically orienting parasitoid fly, and they are still able to attract female crickets for mating though typical calling song is more effective for attracting mates. Here, we document the first record of substrate-borne vibration in both typical and purring male morphs of T. oceanicus . We used a paired microphone and accelerometer to simultaneously record airborne and substrate-borne sounds produced during one-on-one courtship trials in the field. Both typical and purring males produced substrate-borne vibrations during courtship that temporally matched the airborne acoustic signal, suggesting that the same mechanism (wing movement) produces both sounds. As previously established, in the airborne channel, purring males produce lower amplitude but higher peak frequency songs than typical males. In the vibrational channel, purring crickets produce songs that are higher in peak frequency than typical males, but there is no difference in amplitude between morphs. Because louder songs (airborne) are preferred by females in this species, the lack of difference in amplitude between morphs in the substrate-borne channel could have implications for mating decisions. This work lays the groundwork for investigating variation in substrate-borne vibrations in T. oceanicus , intended and unintended receiver responses to these vibrations, and the evolution of substrate-borne vibrations over time in conjunction with rapid evolutionary shifts in the airborne acoustic signal. 
    more » « less
  4. Synopsis This study extends recent research demonstrating that the veiled chameleon (Chamaeleo calyptratus) can produce and detect biotremors. Chameleons were paired in various social contexts: dominance (male–male; female–female C. calyptratus); courtship (male–female C. calyptratus); heterospecific (C. calyptratus + C. gracilis); and inter-size class dominance (adult + juvenile C. calyptratus). Simultaneous video and accelerometer recordings were used to monitor their behavior and record a total of 398 biotremors. Chamaeleo calyptratus produced biotremors primarily in conspecific dominance and courtship contexts, accounting for 84.7% of the total biotremors recorded, with biotremor production varying greatly between individuals. Biotremors were elicited by visual contact with another conspecific or heterospecific, and trials in which chameleons exhibited visual displays and aggressive behaviors were more likely to record biotremors. Three classes of biotremor were identified—hoots, mini-hoots, and rumbles, which differed significantly in fundamental frequency, duration, and relative intensity. Biotremor frequency decreased with increasing signal duration, and frequency modulation was evident, especially in hoots. Overall, the data show that C. calyptratus utilizes substrate-borne vibrational communication during conspecific and possibly heterospecific interactions. 
    more » « less
  5. We present Sketch2Sound, a generative audio model capable of creating high-quality sounds from a set of interpretable time-varying control signals: loudness, brightness, and pitch, as well as text prompts. Sketch2Sound can synthesize arbitrary sounds from sonic imitations (i.e.,~a vocal imitation or a reference sound-shape). Sketch2Sound can be implemented on top of any text-to-audio latent diffusion transformer (DiT), and requires only 40k steps of fine-tuning and a single linear layer per control, making it more lightweight than existing methods like ControlNet. To synthesize from sketchlike sonic imitations, we propose applying random median filters to the control signals during training, allowing Sketch2Sound to be prompted using controls with flexible levels of temporal specificity. We show that Sketch2Sound can synthesize sounds that follow the gist of input controls from a vocal imitation while retaining the adherence to an input text prompt and audio quality compared to a text-only baseline. Sketch2Sound allows sound artists to create sounds with the semantic flexibility of text prompts and the expressivity and precision of a sonic gesture or vocal imitation. 
    more » « less