skip to main content


Title: Characterizing microplastic hazards: which concentration metrics and particle characteristics are most informative for understanding toxicity in aquatic organisms?
Abstract There is definitive evidence that microplastics, defined as plastic particles less than 5 mm in size, are ubiquitous in the environment and can cause harm to aquatic organisms. These findings have prompted legislators and environmental regulators to seek out strategies for managing risk. However, microplastics are also an incredibly diverse contaminant suite, comprising a complex mixture of physical and chemical characteristics (e.g., sizes, morphologies, polymer types, chemical additives, sorbed chemicals, and impurities), making it challenging to identify which particle characteristics might influence the associated hazards to aquatic life. In addition, there is a lack of consensus on how microplastic concentrations should be reported. This not only makes it difficult to compare concentrations across studies, but it also begs the question as to which concentration metric may be most informative for hazard characterization. Thus, an international panel of experts was convened to identify 1) which concentration metrics (e.g., mass or count per unit of volume or mass) are most informative for the development of health-based thresholds and risk assessment and 2) which microplastic characteristics best inform toxicological concerns. Based on existing knowledge, it is recommended that microplastic concentrations in toxicity tests are calculated from both mass and count at minimum, though ideally researchers should report additional metrics, such as volume and surface area, which may be more informative for specific toxicity mechanisms. Regarding particle characteristics, there is sufficient evidence to conclude that particle size is a critical determinant of toxicological outcomes, particularly for the mechanisms of food dilution and tissue translocation .  more » « less
Award ID(s):
1935028
NSF-PAR ID:
10357887
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Microplastics and Nanoplastics
Volume:
2
Issue:
1
ISSN:
2662-4966
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To assess the potential risk of microplastic exposure to humans and aquatic ecosystems, reliable toxicity data is needed. This includes a more complete foundational understanding of microplastic toxicity and better characterization of the hazards they may present. To expand this understanding, an international group of experts was convened in 2020–2021 to identify critical thresholds at which microplastics found in drinking and ambient waters present a health risk to humans and aquatic organisms. However, their findings were limited by notable data gaps in the literature. Here, we identify those shortcomings and describe four categories of research recommendations needed to address them: 1) adequate particle characterization and selection for toxicity testing; 2) appropriate experimental study designs that allow for the derivation of dose-response curves; 3) establishment of adverse outcome pathways for microplastics; and 4) a clearer understanding of microplastic exposure, particularly for human health. By addressing these four data gaps, researchers will gain a better understanding of the key drivers of microplastic toxicity and the concentrations at which adverse effects may occur, allowing a better understanding of the potential risk that microplastics exposure might pose to human and aquatic ecosystems. 
    more » « less
  2. Abstract

    Microplastics have been documented in drinking water, but their effects on human health from ingestion, or the concentrations at which those effects begin to manifest, are not established. Here, we report on the outcome of a virtual expert workshop conducted between October 2020 and October 2021 in which a comprehensive review of mammalian hazard studies was conducted. A key objective of this assessment was to evaluate the feasibility and confidence in deriving a human health-based threshold value to inform development of the State of California’s monitoring and management strategy for microplastics in drinking water. A tiered approach was adopted to evaluate the quality and reliability of studies identified from a review of the peer-reviewed scientific literature. A total of 41 in vitro and 31 in vivo studies using mammals were identified and subjected to a Tier 1 screening and prioritization exercise, which was based on an evaluation of how each of the studies addressed various quality criteria. Prioritized studies were identified largely based on their application and reporting of dose–response relationships. Given that methods for extrapolating between in vitro and in vivo systems are currently lacking, only oral exposure in vivo studies were identified as fit-for-purpose within the context of this workshop. Twelve mammalian toxicity studies were prioritized and subjected to a Tier 2 qualitative evaluation by external experts. Of the 12 studies, 7 report adverse effects on male and female reproductive systems, while 5 reported effects on various other physiological endpoints. It is notable that the majority of studies (83%) subjected to Tier 2 evaluation report results from exposure to a single polymer type (polystyrene spheres), representing a size range of 0.040 to 20 µm. No single study met all desired quality criteria, but collectively toxicological effects with respect to biomarkers of inflammation and oxidative stress represented a consistent trend. While it was possible to derive a conservative screening level to inform monitoring activities, it was not possible to extrapolate a human–health-based threshold value for microplastics, which is largely due to concerns regarding the relative quality and reliability of current data, but also due to the inability to extrapolate data from studies using monodisperse plastic particles, such as polystyrene spheres to an environmentally relevant exposure of microplastics. Nevertheless, a conservative screening level value was used to estimate a volume of drinking water (1000 L) that could be used to support monitoring activities and improve our overall understanding of exposure in California’s drinking water. In order to increase confidence in our ability to derive a human–health-based threshold value in the future, several research recommendations are provided, with an emphasis towards strengthening how toxicity studies should be conducted in the future and an improved understanding of human exposure to microplastics, insights critically important to better inform future risk assessments.

    Graphical abstract

     
    more » « less
  3. Abstract

    Microplastic is a contaminant of concern worldwide. Rivers are implicated as major pathways of microplastic transport to marine and lake ecosystems, and microplastic ingestion by freshwater biota is a risk associated with microplastic contamination, but there is little research on microplastic ecology within freshwater ecosystems. Microplastic uptake by fish is likely affected by environmental microplastic abundance and aspects of fish ecology, but these relationships have rarely been addressed. We measured the abundance and composition of microplastic in fish and surface waters from 3 major tributaries of Lake Michigan, USA. Microplastic was detected in fish and surface waters from all 3 sites, but there was no correlation between microplastic concentrations in fish and surface waters. Rather, there was a significant effect of functional feeding group on microplastic concentration in fish.Neogobius melanostomus(round goby, a zoobenthivore) had the highest concentration of gut microplastic (19 particles fish−1) compared to 10 other fish taxa measured, and had a positive linear relationship between body size and number of microplastic particles. Surface water microplastic concentrations were lowest in the most northern, forested watershed, and highest in the most southern, agriculturally dominated watershed. Results suggest microplastic pollution is common in river food webs and is connected to species feeding characteristics. Future research should focus on understanding the movement of microplastic from point-source and diffuse sources and into aquatic ecosystems, which will support pollution management efforts on inland waters.

     
    more » « less
  4. Plastics have long been an environmental contaminant of concern as both large-scale plastic debris and as micro- and nano-plastics with demonstrated wide-scale ubiquity. Research in the past decade has focused on the potential toxicological risks posed by microplastics, as well as their unique fate and transport brought on by their colloidal nature. These efforts have been slowed by the lack of analytical techniques with sufficient sensitivity and selectivity to adequately detect and characterize these contaminants in environmental and biological matrices. To improve analytical analyses, microplastic tracers are developed with recognizable isotopic, metallic, or fluorescent signatures capable of being identified amidst a complex background. Here we describe the synthesis, characterization, and application of a novel synthetic copolymer nanoplastic based on polystyrene (PS) and poly(2-vinylpyridine) (P2VP) intercalated with gold, platinum or palladium nanoparticles that can be capped with different polymeric shells meant to mimic the intended microplastic. In this work, particles with PS and polymethylmethacrylate (PMMA) shells are used to examine the behavior of microplastic particles in estuarine sediment and coastal waters. The micro- and nanoplastic tracers, with sizes between 300 and 500 nm in diameter, were characterized using multiple physical, chemical, and colloidal analysis techniques. The metallic signatures of the tracers allow for quantification by both bulk and single-particle inductively-coupled plasma mass spectrometry (ICP-MS and spICP-MS, respectively). As a demonstration of environmental applicability, the tracers were equilibrated with sediment collected from Bellingham Bay, WA, United States to determine the degree to which microplastics bind and sink in an estuary based of grain size and organic carbon parameters. In these experiments, between 80 and 95% of particles were found to associate with the sediment, demonstrative of estuaries being a major anticipated sink for these contaminants. These materials show considerable promise in their versatility, potential for multiplexing, and utility in studying micro- and nano-plastic transport in real-world environments. 
    more » « less
  5. Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman microspectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples. 
    more » « less