skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesizing carbon nanotubes in space
Context. As the fourth most abundant element in the universe, carbon (C) is widespread in the interstellar medium (ISM) in various allotropic forms (e.g. fullerenes have been identified unambiguously in many astronomical environments, the presence of polycyclic aromatic hydrocarbon molecules in space has been commonly acknowledged, and presolar graphite, as well as nanodiamonds, have been identified in meteorites). As stable allotropes of these species, whether carbon nanotubes (CNTs) and their hydrogenated counterparts are also present in the ISM or not is unknown. Aims. The aim of the present works is to explore the possible routes for the formation of CNTs in the ISM and calculate their fingerprint vibrational spectral features in the infrared (IR). Methods. We studied the hydrogen-abstraction and acetylene-addition (HACA) mechanism and investigated the synthesis of nanotubes using density functional theory (DFT). The IR vibrational spectra of CNTs and hydrogenated nanotubes (HNTs), as well as their cations, were obtained with DFT. Results. We find that CNTs could be synthesized in space through a feasible formation pathway. CNTs and cationic CNTs, as well as their hydrogenated counterparts, exhibit intense vibrational transitions in the IR. Their possible presence in the ISM could be investigated by comparing the calculated vibrational spectra with astronomical observations made by the Infrared Space Observatory, Spitzer Space Telescope, and particularly the upcoming James Webb Space Telescope.  more » « less
Award ID(s):
1816411
PAR ID:
10357934
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
631
ISSN:
0004-6361
Page Range / eLocation ID:
A54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fullertubes are tubular fullerenes with nanotube-like middle section and fullerene-like endcaps. To understand how this intermediate form between spherical fullerenes and nanotubes is reflected in the vibrational modes, we performed comprehensive studies of IR and Raman spectra of fullertubes C90-D5h, C96-D3d, and C100-D5d. An excellent agreement between experimental and DFT-computed spectra enabled a detailed vibrational assignment and allowed an analysis of the localization degree of the vibrational modes in different parts of fullertubes. Projection analysis was performed to establish an exact numerical correspondence between vibrations of the belt midsection and fullerene headcaps to the modes of nanotubes and fullerene C60-Ih. As a result, we could not only identify fullerene-like and CNT-like vibrations of fullertubes, but also trace their origin in specific vibrational modes of CNT and C60-Ih. IR spectra were found to be dominated by vibrations of fullerene-like caps resembling IR-active modes of C60-Ih, whereas in Raman spectra both caps and belt vibrations are found to be equally active. Unlike the resonance Raman spectra of CNTs, in which only two single-phonon bands are detected, the Raman spectra of fullertubes exhibit several CNT-like vibrations and thus provide additional information on nanotube phonons. 
    more » « less
  2. ABSTRACT Some young stellar objects such as T Tauri-like ‘dipper’ stars vary due to transient partial occultation by circumstellar dust, and observations of this phenomenon inform us of conditions in the planet-forming zones close to these stars. Although many dipper stars have been identified with space missions such as Kepler/K2, ground-based telescopes offer longer term and multiwavelength perspectives. We identified 11 dipper stars in the Lupus star-forming region in data from the All-Sky Automated Survey for SuperNovae (ASAS-SN), and further characterized these using observations by the Las Cumbres Global Observatory Telescope (LCOGT) and the Transiting Exoplanet Survey Satellite (TESS), as well as archival data from other missions. Dipper stars were identified from a catalogue of nearby young stars and selected based on the statistical significance, asymmetry, and quasi-periodicity or aperiodicity of variability in their ASAS-SN light curves. All 11 stars lie above or redwards of the zero-age main sequence and have infrared (IR) excesses indicating the presence of full circumstellar discs. We obtain reddening–extinction relations for the variability of seven stars using our combined ASAS-SN-TESS and LCOGT photometry. In all cases, the slopes are below the ISM value, suggesting larger grains, and we find a tentative relation between the slope (grain size) and the $$K_\text{s}-[22 \, \mu \text{m}]$$ IR colour regarded as a proxy for disc evolutionary state. 
    more » « less
  3. The aim of this work was to study the applicability of infrared spectroscopy combined with machine learning techniques to evaluate the uptake and distribution of gold nanoparticles (AuNPs) and single-walled carbon nanotubes (CNTs) in Cicer arietinum L. (chickpea). Obtained spectral data revealed that the uptake of AuNPs and CNTs by the C. arietinum seedlings’ root resulted in the accumulation of AuNPs and CNTs at stem and leaf parts, which consequently led to the heterogeneous distribution of nanoparticles. principal component analysis and support vector machine classification were applied to assess its usefulness for evaluating the results obtained using the attenuated total reflectance-Fourier transform infrared spectroscopy method of C. arietinum plant grown at different conditions. Specific wavenumbers that could classify the different nanoparticle constituents of C. arietinum plant extracts according to their ATR-FTIR spectra were identified within three specific regions: 450–503 cm−1, 750–870 cm−1, and 1022–1218 cm−1, based on larger PCA loadings of C. arietinum ATR-FTIR spectra with distinct spectral differences between samples of interest. The current work paves a path to the future fabrication strategies for AuNPs and single-walled CNTs via plant-based routes and highlights the diversity of the applications of these materials in bio-nanotechnology. These results indicate the importance of family-plant selection, choice of methods, and pathways for the efficient biomolecule delivery, drug cargo, and optimal conditions in the wide spectrum of bioapplications. 
    more » « less
  4. Research interest in nanoscale biomaterials has continued to grow in the past few decades, driving the need to form families of nanomaterials grouped by similar physical or chemical properties. Nanotubes have occupied a unique space in this field, primarily due to their high versatility in a wide range of biomedical applications. Although similar in morphology, members of this nanomaterial family widely differ in synthesis methods, mechanical and physiochemical properties, and therapeutic applications. As this field continues to develop, it is important to provide insight into novel biomaterial developments and their overall impact on current technology and therapeutics. In this review, we aim to characterize and compare two members of the nanotube family: carbon nanotubes (CNTs) and janus-base nanotubes (JBNts). While CNTs have been extensively studied for decades, JBNts provide a fresh perspective on many therapeutic modalities bound by the limitations of carbon-based nanomaterials. Herein, we characterize the morphology, synthesis, and applications of CNTs and JBNts to provide a comprehensive comparison between these nanomaterial technologies. 
    more » « less
  5. Abstract Infrared (IR) thermal imaging is receiving a great deal of attention due to its wide range of applications. Given multiple issues (like cost and availability) with the inorganic materials currently exploited for IR imaging, there is nowadays a great push of developing organic imaging materials. Carbon‐based materials are known to have significant transparency in the visible and IR regions and some are used as transparent conductors. Here, whether π‐conjugated carbon‐based materials are suitable for long‐wave (LW) and mid‐wave (MW) IR imaging applications is computationally assessed. Using density functional theory calculations, the IR‐vibrational properties of molecules from acenes to coronenes and fullerenes, and of periodic systems like graphene and carbon nanotubes are characterized. Fullerenes, graphenes, and double‐walled carbon nanotubes are found to be very attractive as they are transparent in both the LWIR and MWIR regions, a feature resulting from the absence of hydrogen atoms. Also, it is found that replacing hydrogen atoms in a molecule with deuterium or sulfur atoms can be an efficient way to improve their LWIR or MWIR transparency, respectively. For fused‐ring systems having hydrogen atoms on the periphery, designing molecules with trio CH‐units is another way to enhance the transparency in the LWIR region. 
    more » « less