skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction
Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions.  more » « less
Award ID(s):
2131619
PAR ID:
10357974
Author(s) / Creator(s):
; ;
Editor(s):
Wang, Dong
Date Published:
Journal Name:
Mechanical systems and signal processing
Volume:
179
Issue:
109347
ISSN:
0888-3270
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electric vehicles (EVs) are spreading rapidly in the market due to their better responsiveness and environmental friendliness. An accurate diagnosis of EV battery status from operational data is necessary to ensure reliability, minimize maintenance costs, and improve sustainability. This paper presents a deep learning approach based on the long short-term memory network (LSTM) to estimate the state of health (SOH) and degradation of lithium-ion batteries for electric vehicles without prior knowledge of the complex degradation mechanisms. Our results are demonstrated on the open-source NASA Randomized Battery Usage Dataset with batteries aging under changing operating conditions. The randomized discharge data can better represent practical battery usage. The study provides additional end-of-use suggestions, including continued use, remanufacturing/repurposing, recycling, and disposal; for battery management dependent on the predicted battery status. The suggested replacement point is proposed to avoid a sharp degradation phase of the battery to prevent a significant loss of active material on the electrodes. This facilitates the remanufacturing/repurposing process for the replaced battery, thereby extending the battery's life for secondary use at a lower cost. The prediction model provides a tool for customers and the battery second use industry to handle their EV battery properly to get the best economy and system reliability compromise. 
    more » « less
  2. Abstract Electric vehicles (EVs) have emerged as an environmentally friendly alternative to conventional fuel vehicles. Lithium-ion batteries are the major energy source for EVs, but they degrade under dynamic operating conditions. Accurate estimation of battery state of health is important for sustainability as it quantifies battery condition, influences reuse possibilities, and helps alleviate capacity degradation, which finally impacts battery lifespan and energy efficiency. In this paper, a self-attention graph neural network combined with long short-term memory (LSTM) is introduced by focusing on using temporal and spatial dependencies in battery data. The LSTM layer utilizes a sliding window to extract temporal dependencies in the battery health factors. Two different approaches to the graph construction layer are subsequently developed: health factor-based and window-based graphs. Each approach emphasizes the interconnections between individual health factors and exploits temporal features in a deeper way, respectively. The self-attention mechanism is used to compute the adjacent weight matrix, which measures the strength of interactions between nodes in the graph. The impact of the two graph structures on the model performance is discussed. The model accuracy and computational cost of the proposed model are compared with the individual LSTM and gated recurrent unit (GRU) models. 
    more » « less
  3. Abstract Diagnosing lithium-ion battery health and predicting future degradation is essential for driving design improvements in the laboratory and ensuring safe and reliable operation over a product’s expected lifetime. However, accurate battery health diagnostics and prognostics is challenging due to the unavoidable influence of cell-to-cell manufacturing variability and time-varying operating circumstances experienced in the field. Machine learning approaches informed by simulation, experiment, and field data show enormous promise to predict the evolution of battery health with use; however, until recently, the research community has focused on deterministic modeling methods, largely ignoring the cell-to-cell performance and aging variability inherent to all batteries. To truly make informed decisions regarding battery design in the lab or control strategies for the field, it is critical to characterize the uncertainty in a model’s predictions. After providing an overview of lithium-ion battery degradation, this paper reviews the current state-of-the-art probabilistic machine learning models for health diagnostics and prognostics. Details of the various methods, their advantages, and limitations are discussed in detail with a primary focus on probabilistic machine learning and uncertainty quantification. Last, future trends and opportunities for research and development are discussed. 
    more » « less
  4. While it is well known that the electrochemical performance of lithium-ion batteries degrades with repeated cycling, the impact of aging on thermal properties is less well understood. Degradation of thermal transport within the cell can lead to increased or even excessive temperatures that in turn lead to accelerated ageing or even thermal runaway. Thus, understanding how aging impacts thermal properties is critical to ensuring safe and reliable operation of batteries. In this presentation, we evaluate the evolution of the thermal diffusivity, heat capacity, and density of the electrodes of lithium-ion battery cells which were aged at different thermal conditions. From the measured properties, we estimate the thermal conductivity of the electrodes and the active materials in the electrodes as well. Overall, the transport properties approximately follow a trend with the time-averaged temperature during the aging process. The changes in the thermal properties are correlated with observations of changes to the microstructure of the electrodes during cycling. These results can impact the design of battery systems for improved performance and stability throughout their lifetime. 
    more » « less
  5. ABSTRACT Batteries are prevalent energy storage devices, and their failures can cause huge losses such as the shutdown of entire systems. Therefore, the prognostic health management of batteries to increase their availability is highly desirable. This work focuses on improving the serviceability of batteries for wireless sensor networks (WSNs) deployed in remote and hard‐to‐reach places. We propose an active management strategy such that the batteries in a network will attain similar end‐of‐life times, in addition to lifetime extension. The fundamental idea is to adaptively adjust the node quality‐of‐service (QoS) to actively manage their degradation processes, while ensuring a minimum level of network QoS. The framework first executes a prognostic algorithm that can predict the remaining useful life (RUL) of a battery, given its assigned node‐level QoS. A Bayesian optimization framework with an augmented Lagrangian method has been adopted to efficiently solve the developed black‐box constrained optimization problem. A Matlab Simulink model based on a truss bridge structure health monitoring network is built considering the battery aging and temperature effects. Compared with the benchmark models, the proposed strategy demonstrates a more extended network lifespan and uniform working time ratio. 
    more » « less