Abstract Electric vehicles (EVs) are considered an environmentally friendly option compared to conventional vehicles. As the most critical module in EVs, batteries are complex electrochemical components with nonlinear behavior. On-board battery system performance is also affected by complicated operating environments. Real-time EV battery in-service status prediction is tricky but vital to enable fault diagnosis and prevent dangerous occurrences. Data-driven models with advantages in time-series analysis can be used to capture the degradation pattern from data about certain performance indicators and predict the battery states. The transformer model can capture long-range dependencies efficiently using a multi-head attention block mechanism. This paper presents the implementation of a standard transformer and an encoder-only transformer neural network to predict EV battery state of health (SOH). Based on the analysis of the lithium-ion battery from the NASA Prognostics Center of Excellence website's publicly accessible dataset, 28 features related to the charge and discharge measurement data are extracted. The features are screened using Pearson correlation coefficients. The results show that the filtered features can improve the model's accuracy and computational efficiency. The proposed standard transformer shows good performance in the SOH prediction. 
                        more » 
                        « less   
                    
                            
                            State-of-Health Estimation for Sustainable Electric Vehicle Batteries Using Temporal-Enhanced Self-Attention Graph Neural Networks
                        
                    
    
            Abstract Electric vehicles (EVs) have emerged as an environmentally friendly alternative to conventional fuel vehicles. Lithium-ion batteries are the major energy source for EVs, but they degrade under dynamic operating conditions. Accurate estimation of battery state of health is important for sustainability as it quantifies battery condition, influences reuse possibilities, and helps alleviate capacity degradation, which finally impacts battery lifespan and energy efficiency. In this paper, a self-attention graph neural network combined with long short-term memory (LSTM) is introduced by focusing on using temporal and spatial dependencies in battery data. The LSTM layer utilizes a sliding window to extract temporal dependencies in the battery health factors. Two different approaches to the graph construction layer are subsequently developed: health factor-based and window-based graphs. Each approach emphasizes the interconnections between individual health factors and exploits temporal features in a deeper way, respectively. The self-attention mechanism is used to compute the adjacent weight matrix, which measures the strength of interactions between nodes in the graph. The impact of the two graph structures on the model performance is discussed. The model accuracy and computational cost of the proposed model are compared with the individual LSTM and gated recurrent unit (GRU) models. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2324950
- PAR ID:
- 10543946
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Energy Resources Technology
- Volume:
- 146
- Issue:
- 6
- ISSN:
- 0195-0738
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Electric vehicles (EVs) are considered an environmentally friendly option to conventional vehicles. As the most critical module in EVs, batteries are complex electrochemical components with nonlinear behavior. On-board battery system performance is also affected by complicated operating environments. Real-time EV battery in-service status prediction is tricky but vital to enable fault diagnosis and aid in the prevention of dangerous occurrences. Data-driven models with advantages in time series analysis can be used to capture the degradation pattern from data about certain performance indicators and predict the battery states. The Transformer model is capable of capturing long-range dependencies efficiently using a multi-head attention block mechanism. This paper presents the implementation of a standard Transformer and an encoder-only Transformer neural network to predict EV battery state of health (SOH). Based on the analysis of the lithium-ion battery from NASA Prognostics Center of Excellence website's publicly accessible dataset, 28 features related to the charge and discharge measurement data are extracted. The features are screened using Pearson correlation coefficients. The results show that the filtered features can effectively improve the accuracy of the model as well as the computational efficiency. The proposed standard Transformer shows good performance in SOH prediction.more » « less
- 
            Wang, Dong (Ed.)Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions.more » « less
- 
            Electric vehicles (EVs) are spreading rapidly in the market due to their better responsiveness and environmental friendliness. An accurate diagnosis of EV battery status from operational data is necessary to ensure reliability, minimize maintenance costs, and improve sustainability. This paper presents a deep learning approach based on the long short-term memory network (LSTM) to estimate the state of health (SOH) and degradation of lithium-ion batteries for electric vehicles without prior knowledge of the complex degradation mechanisms. Our results are demonstrated on the open-source NASA Randomized Battery Usage Dataset with batteries aging under changing operating conditions. The randomized discharge data can better represent practical battery usage. The study provides additional end-of-use suggestions, including continued use, remanufacturing/repurposing, recycling, and disposal; for battery management dependent on the predicted battery status. The suggested replacement point is proposed to avoid a sharp degradation phase of the battery to prevent a significant loss of active material on the electrodes. This facilitates the remanufacturing/repurposing process for the replaced battery, thereby extending the battery's life for secondary use at a lower cost. The prediction model provides a tool for customers and the battery second use industry to handle their EV battery properly to get the best economy and system reliability compromise.more » « less
- 
            Boosting critical infrastructures’ (CIs) preparedness to threats, including natural disasters and manmade attacks, is a global imperative. The intrinsic dependencies and interdependencies between CIs hinder their resiliency. Moreover, the evolution of CIs is, in many cases, en routè to tighten those interdependencies. The goal of this paper is to uncover and analyze the rising interdependency between the electric power grid, information and communication technology (ICT) networks, and transportation systems that are heavily reliant on electric-power drivetrains, collectively referred to hereafter as electro-mobility (e-mobility). E-mobility includes electric vehicles (EVs) and electric railway systems. A new influence graph-based model is introduced, as a promising approach to model operational interdependencies between CIs. Each of the links of the influence graph represents the probability of failure of the sink node following a failure of the source node. A futuristic scenario has been analyzed assuming increased dependency of the power grid on ICT for monitoring and control, and high penetration levels of EVs and distributed energy resources (DERs) in an urban region. Inspecting the influence graph shows that the impact of interdependency between the power grid, the ICT network, and the transportation network, for the case study analyzed in this paper, does not lead to failures during normal operation with proper design; however, it is severe during emergency conditions since it leads to failure propagation among the three CIs. This paper sets the stage for more research on this topic, and calls for more attention to interdependency analysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    