skip to main content


Title: Promoting pedagogical change around writing: Observations of discursive turbulence
Our work aims to support engineering and science faculty in adapting core concepts and best practices from writing studies and technical communication for their courses. We also study the effectiveness of varied supports, with an aim of improving the diffusion of effective pedagogies. Our Writing Across Engineering and Science (WAES) program includes a semester-long faculty learning community, followed by sustained mentoring, during which faculty and graduate students from our multidisciplinary team work with mentees to develop and implement new pedagogies and course materials. For graduate students, we developed an engineering course focused on engineering and science writing practices and pedagogies. This paper focuses on one key finding from our analysis: discussions about writing practices involving people from different disciplines often involve irregular and sporadic bumpiness through which foundational changes can emerge. We call this phenomenon discursive turbulence. In our experience, signs of discursive turbulence include affective intensity and co- existing contradictory beliefs. We share four examples to illustrate ways in which discursive turbulence appears, drawn from people with varying degrees and types of engagement with our transdisciplinary work: i) project team members, ii) a faculty mentee, iii) faculty who participated in a focus group on disciplinary writing goals, and iv) engineering graduate students who took our class on writing practice and pedagogy. Discursive turbulence now informs our mentoring approach. It can be generative as well as challenging. Importantly, it takes time to resolve, suggesting the utility of sustained mentoring during pedagogical change.  more » « less
Award ID(s):
2013443
PAR ID:
10358075
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Page Range / eLocation ID:
42053
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article reports on a mentoring case from a transdisciplinary, longitudinal writing-across-the-curriculum (WAC) initiative in which the situated complexities of integrating new writing pedagogies were observed and supported. Considering this case through an agential realist lens, we introduce the concept of “discursive turbulence”: an emergent quality of situated semiotic activity produced from the continual mixing of discourses. Discursive turbulence can emerge in myriad and complex ways, including fits-and-starts of pedagogical development, mismatched discursive alignments, affective signs of struggle and intensity, and nonlinear patterns of change. Through a series of four vignettes, we illustrate discursive turbulence as it emerged while pedagogical changes around writing were being implemented by an environmental sciences professor. We suggest that discursive turbulence is to be expected in heterodisciplinary spaces, and we argue that attention to discursive turbulence will lead to more robust accounts of learning, becoming, and literate activity, as well as new ways of supporting pedagogical becoming.

     
    more » « less
  2. This paper examined the role of climate (e.g., interactions with others) in the skill development of engineering and physical science doctoral students. Skill development in graduate school often is connected to students’ primary funding mechanism, which enables students to interact with a research group or teaching team. Advisors also play a pivotal role in the engineering doctoral student experience; however, less is known about how positive mentoring influences specific skill development for engineering doctoral students. Analyzing data from the Graduate Student Funding Survey (n = 615), we focused analyses on three climate Factors (Advising climate; Faculty and staff climate; Peer climate) and specific skill development variables (research, teamwork and project management, peer training and mentoring, and communication). We found that advising climate was statistically significant for all four career-related skills, faculty and staff climate for peer training and mentoring skills only, and peer climate for both peer training and mentoring and communication skills. Our findings highlight the importance of climate from a variety of sources within engineering doctoral programs for the development of career-related skills. 
    more » « less
  3. null (Ed.)
    The National Science Foundation (NSF) Emerging Frontiers and Innovation (EFRI) Research Experience and Mentoring (REM) program nationally supports hands-on research and ongoing mentorship in STEM fields at various universities and colleges. The NSF EFRI-REM Mentoring Catalyst initiative was designed to build and train these robust, interactive research mentoring communities that are composed of faculty, postdoctoral associates and graduate student mentors, to broaden participation of underrepresented groups in STEM research who are funded through NSF EFRI-REM. This work-in-progress paper describes the first five years of this initiative, where interactive training programs were implemented from multiple frameworks of effective mentoring. Principal investigators, postdoctoral associates and graduate students are often expected to develop and establish mentoring plans without any formal training in how to be effective mentors. Since the start of this initiative, over 300 faculty, postdoctoral associates and graduate students have been trained on promising practices, strategies, and tools to enhance their research mentoring experiences. In addition to formal mentor training, opportunities to foster a community of practice with current mentors and past mentor training participants (sage mentors) were provided. During these interactions, promising mentoring practices were shared to benefit the mentors and the different mentoring populations that the EFRI-REMs serve. The community of practice connected a diverse group of institutions and faculty to help the EFRI-REM community in its goal of broadening participation across a range of STEM disciplines. Those institutions are then able to discuss, distill and disseminate best practices around the mentoring of participants through targeted mentored training beyond the EFRI-REM at their home institutions. Not only does the EFRI-REM Catalyst initiative focus on broadening participation via strategic training of research mentors, it also empowers mentees, including undergraduate and graduate students and postdoctoral associates, in their research experiences through an entering research undergraduate course and formal mentoring training workshops. Future expansion to other academic units (e.g., colleges, universities) builds on the research collaborations and the initiatives developed and presented in this work-in-progress paper. A long-term goal is to provide insights via collaborative meetings (e.g., webinars, presentations) for STEM and related faculty who are assembling an infrastructure (e.g., proposals for the ERFI-REM program) across a range of research structures. In summary, this work-in-progress paper provides a description of the design and implementation of this initiative, preliminary findings, expanding interactions to other NSF supported Engineering Research Centers, and the future directions of the EFRI-REM Mentoring Catalyst initiative. 
    more » « less
  4. Abstract

    The COVID‐19 pandemic has created new challenges for instructors who seek high‐impact educational practices that can be facilitated online without creating excessive burdens with technology, grading, or enforcement of honor codes. These practices must also account for the possibility that some students may need to join courses asynchronously and have limited or unreliable connectivity. Of the American Association of Colleges and University's list of 11 high‐impact educational practices, writing‐intensive courses may be the easiest for science faculty to adopt during these difficult times. Not only can writing assignments promote conceptual learning, they can also deepen student engagement with the subject matter and with each other. Furthermore, writing assignments can be incredibly flexible in terms of how they are implemented online and can be designed to reduce the possibility of cheating and plagiarism. To accelerate the adoption of writing pedagogies, we summarize evidence‐based characteristics of effective writing assignments and offer a sample writing assignment from an introductory ecology course. We then suggest five strategies to help instructors manage their workload. Although the details of the sample assignment may be particular to our course, this framework is general enough to be adapted to most science courses, including those taught in‐person, those taught online, and those that must be able to switch quickly between the two.

     
    more » « less
  5. In response to the well-documented themes of unique challenges URM doctoral student experience (tokenism, stereotyping, microaggressions, etc.), faculty mentoring remains an especially critical resource to change the trajectory for URM students in graduate education. The purpose of this study is to examine the first two years of change in institutional culture which will increase the number of URM doctoral students who pursue the STEM professoriate. The primary research question asked is “Can a focus on developing and mentoring faculty catalyze change in the culture and practices of their doctoral programs to increase faculty diversity?” Based on the idea that faculty are drivers of lasting institutional change, three diverse public universities collaborate to adapt and implement an institutional change project, called “AGEP-NC Alliance: A Change Model for Doctoral to Faculty Diversity in STEM,” that prioritizes cultural frameworks for deep change in postsecondary education (Gumpertz et al., 2019). Key model components include faculty learning communities; use of national faculty mentoring networks; and use of institutional diversity data. Culturally relevant mentoring is among several approaches of interest to STEM reformers to shift the focus to institutional-level change and not student deficiencies. Operationalized as “cultural integrity,” the approach calls upon students’ racial and ethnic backgrounds as assets for reform in pedagogies and learning activities, while valuing those backgrounds as critical ingredients for acquiring academic capital and career success (Tierney, 1999). Kezar’s (2018) cultural framework for institutional change emphasizes knowledge formation in context as well as analysis of espoused meaning and values organizational members maintain. The researchers present the AGEP-NC Alliance as a narrative, rich case study and collaborative mentoring model, an approach allowing participant researchers to detail sustained data use in collaborative social interaction (Patton, 1990). Results will be shared that highlight faculty as cultural change agents, and organizational learning as a cultural process. Preliminary results show evidence of institutional change at several levels from classroom and laboratory practices to key departmental policies. 
    more » « less