skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Summary of United States Research and Monitoring in Support of the Ross Sea Region Marine Protected Area
Due to the remarkable ecological value of the Ross Sea, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) adopted a large-scale Ross Sea region marine protected area (RSRMPA) in 2016. Since then, many CCAMLR Members have conducted research and monitoring in the region. In 2021, the U.S. Ross Sea science community convened a workshop to collate, synthesize, and coordinate U.S. research and monitoring in the RSRMPA. Here we present workshop results, including an extensive synthesis of the peer-reviewed literature related to the region during the period 2010–early 2021. From the synthesis, several things stand out. First, the quantity and breadth of U.S. Ross Sea research compares to a National Science Foundation Long Term Ecological Research project, especially involving McMurdo Sound. These studies are foundational in assessing effectiveness of the RSRMPA. Second, climate change and fishing remain the two factors most critical to changing ecosystem structure and function in the region. Third, studies that integrate ecological processes with physical oceanographic change continue to be needed, especially in a directed and coordinated research program, in order to effectively separate climate from fishing to explain trends among designated indicator species.  more » « less
Award ID(s):
1935870
PAR ID:
10358103
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Diversity
Volume:
14
Issue:
6
ISSN:
1424-2818
Page Range / eLocation ID:
447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most of the Ross Sea has been designated a marine protected area (MPA), proposed ‘to protect ecosystem structure and function’. To assess effectiveness, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) selected Adélie (Pygoscelis adeliae) and emperor (Aptenodytes forsteri) penguins, Weddell seals (Leptonychotes weddellii) and Antarctic toothfish (Dissostichus mawsoni) as ecosystem change ‘indicator species’. Stable for decades, penguin and seal populations increased during 1998–2018 to surpass historical levels, indicating that change in ecosystem structure and function is underway. We review historical impacts to population trends, decadal datasets of ocean climate and fishing pressure on toothfish. Statistical modelling for Adélie penguins and Weddell seals indicates that variability in climate factors and cumulative extraction of adult toothfish may explain these trends. These mesopredators, and adult toothfish, all prey heavily on Antarctic silverfish (Pleuragramma antarcticum). Toothfish removal may be altering intraguild predation dynamics, leading to competitive release of silverfish and contributing to penguin and seal population changes. Despite decades of ocean/weather change, increases in indicator species numbers around Ross Island only began once the toothfish fishery commenced. The rational-use, ecosystem-based viewpoint promoted by CCAMLR regarding toothfish management needs re-evaluation, including in the context of the Ross Sea Region MPA. 
    more » « less
  2. Abstract To fulfill their conservation potential and provide safeguards for biodiversity, marine protected areas (MPAs) need coordinated research and monitoring for informed management through effective evaluation of ecosystem dynamics. However, coordination is challenging, often due to knowledge gaps caused by inadequate access to data and resources, compounded by insufficient communication between scientists and managers. We propose to use the world's largest MPA in the Ross Sea, Antarctica as a model system to create a comprehensive framework for an interdisciplinary network supporting research and monitoring that could be implemented in other remote large‐scale international MPAs. Our proposed framework has three key components: (i) policy engagement, including delineation of policy needs and ecosystem metrics to assess MPA effectiveness; (ii) community partner engagement to elevate diverse voices, build trust, and share resources; and (iii) integrated science comprising three themes. These themes are: advancement of data science and cyberinfrastructure to facilitate data synthesis and sharing; biophysical modeling towards understanding ecosystem changes and uncertainties; and execution of observational and process studies to address uncertainties and evaluate ecosystem metrics. This proposed framework can improve MPA implementation by generating policy‐relevant science through this coordinated network, which can in turn improve MPA effectiveness in the Ross Sea and beyond. 
    more » « less
  3. Record-breaking heat waves and drought have left West Coast rivers lethally hot for salmon, literally cooked millions of mussels and clams in their shells and left forests primed to burn. The extraordinary severity of 2021’s heat and drought, and its fires and floods, has many people questioning whether climate change, fueled by human actions, is progressing even faster than studies have predicted and what that means for the future. As ecologists, we have watched climate change play out over decades at long-term research sites in forests, fields and coastal areas across the U.S. A recent series of five papers in the journal Ecosphere presents more than 25 case studies from these sites, providing a unique perspective on the changes underway and what’s likely ahead as the planet continues to warm. Here are snapshots of what we’re seeing firsthand in the National Science Foundation’s Long-Term Ecological Research Network sites, from the effect of increasing fires in Oregon’s Cascades to shifting marine life off the coast of Maine, and surprising resilience in Baltimore’s urban forests. 
    more » « less
  4. Vulnerability of marine species to climate change (including ocean acidification, deoxygenation, and associated changes in food supply) depends on species’ ecological and biological characteristics. Most existing assessments focus on coastal species but systematic analysis of climate vulnerability for the deep sea is lacking. Here, we combine a fuzzy logic expert system with species biogeographical data to assess the risks of climate impacts to the population viability of 32 species of exploited demersal deep-sea species across the global ocean. Climatic hazards are projected to emerge from historical variabilities in all the recorded habitats of the studied species by the mid-twenty-first century. Species that are both at very high risk of climate impacts and highly vulnerable to fishing include Antarctic toothfish (Dissostichus mawsoni), rose fish (Sebastes norvegicus), roughhead grenadier (Macrourus berglax), Baird’s slickhead (Alepocephalus bairdii), cusk (Brosme brosme), and Portuguese dogfish (Centroscymnus coelepis). Most exploited deep-sea fishes are likely to be at higher risk of local, or even global, extinction than previously assessed because of their high vulnerability to both climate change and fishing. Spatially, a high concentration of deep-sea species that are climate vulnerable is predicted in the northern Atlantic Ocean and the Indo-Pacific region. Aligning carbon mitigation with improved fisheries management offers opportunities for overall risk reduction in the coming decades. Regional fisheries management organizations (RFMOs) have an obligation to incorporate climate change in their deliberations. In addition, deep-sea areas that are not currently managed by RFMOs should be included in existing or new international governance institutions or arrangements. 
    more » « less
  5. The Ross Sea in the Southern Ocean is frequently considered one of the most pristine ecosystems in the world, but recent data suggest that changes to oceanic conditions may be impacting wildlife abundance. We used 41 yr of data to assess how variation in biologically relevant environmental conditions relates to annual reproductive output for the world’s largest population of Weddell sealsLeptonychotes weddellii, an upper-level predator in the Ross Sea. Pup production increased 150% across the time series, and interannual variation tripled. Linear regression analyses, which explained 73.7% of the variance in pup production, supported a non-linear, convex relationship between reproductive output and summer sea ice extent, with more pups born in years with more or less sea ice than in years with intermediate ice extent. While total annual toothfish catch 7 yr previous appears to be positively associated with reproductive output, a similar amount of variation in pup production could be explained by an alternative model with a linear, temporal trend. Our results highlight a sizable increase in the reproductive output of this demographically buffered polar marine predator. The increase in pup production may be the result of competitive release due to commercial fishing, cascading ecological effects from commercial fishing or other environmental shifts, or population inertia from a few large birth cohorts. It is challenging to disentangle these hypotheses with the current publicly available environmental data. Future demographic analyses and collaborative research are needed to understand how environmental changes are impacting marine populations in this ecosystem. 
    more » « less