skip to main content


Title: Recurrent pattern of extreme fire weather in California
Abstract Historical wildfire events in California have shown a tendency to occur every five to seven years with a rapidly increasing tendency in recent decades. This oscillation is evident in multiple historical climate records, some more than a century long, and appears to be continuing. Analysis shows that this 5–7 year oscillation is linked to a sequence of anomalous large-scale climate patterns with an eastward propagation in both the ocean and atmosphere. While warmer temperature emerges from the northern central Pacific to the west coast of California, La Niña pattern develops simultaneously, implying that the lifecycle of the El Niño-Southern Oscillation that takes multiple years to form could be a trigger. The evolving patterns of the Pacific-to-North America atmospheric teleconnection suggest the role of tropical and subtropical forcing embedded in this lifecycle. These results highlight the semi-cyclical hydrological behavior as a climate driver for wildfire variability in California.  more » « less
Award ID(s):
1903721
NSF-PAR ID:
10358189
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
9
ISSN:
1748-9326
Page Range / eLocation ID:
094031
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent record-breaking wildfire seasons in California prompt an investigation into the climate patterns that typically precede anomalous summer burned forest area. Using burned-area data from the U.S. Forest Service’s Monitoring Trends in Burn Severity (MTBS) product and climate data from the fifth major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) over 1984–2018, relationships between the interannual variability of antecedent climate anomalies and July California burned area are spatially and temporally characterized. Lag correlations show that antecedent high vapor pressure deficit (VPD), high temperatures, frequent extreme high temperature days, low precipitation, high subsidence, high geopotential height, low soil moisture, and low snowpack and snowmelt anomalies all correlate significantly with July California burned area as far back as the January before the fire season. Seasonal regression maps indicate that a global midlatitude atmospheric wave train in late winter is associated with anomalous July California burned area. July 2018, a year with especially high burned area, was to some extent consistent with the general patterns revealed by the regressions: low winter precipitation and high spring VPD preceded the extreme burned area. However, geopotential height anomaly patterns were distinct from those in the regressions. Extreme July heat likely contributed to the extent of the fires ignited that month, even though extreme July temperatures do not historically significantly correlate with July burned area. While the 2018 antecedent climate conditions were typical of a high-burned-area year, they were not extreme, demonstrating the likely limits of statistical prediction of extreme fire seasons and the need for individual case studies of extreme years. Significance Statement The purpose of this study is to identify the local and global climate patterns in the preceding seasons that influence how the burned summer forest area in California varies year-to-year. We find that a dry atmosphere, high temperatures, dry soils, less snowpack, low precipitation, subsiding air, and high pressure centered west of California all correlate significantly with large summer burned area as far back as the preceding January. These climate anomalies occur as part of a hemispheric scale pattern with weak connections to the tropical Pacific Ocean. We also describe the climate anomalies preceding the extreme and record-breaking burned-area year of 2018, and how these compared with the more general patterns found. These results give important insight into how well and how early it might be possible to predict the severity of an upcoming summer wildfire season in California. 
    more » « less
  2. Abstract

    The El Nino-Southern Oscillation (ENSO) is the dominant interannual variability of Earth’s climate system and plays a central role in global climate prediction. Outlooks of ENSO and its impacts often follow a two-tier approach: predicting ENSO sea surface temperature anomaly in tropical Pacific and then predicting its global impacts. However, the current picture of ENSO global impacts widely used by forecasting centers and atmospheric science textbooks came from two earliest surface station datasets complied 30 years ago, and focused on the extreme phases rather than the whole ENSO lifecycle. Here, we demonstrate a new picture of the global impacts of ENSO throughout its whole lifecycle based on the rich latest satellite,in situand reanalysis datasets. ENSO impacts are much wider than previously thought. There are significant impacts unknown in the previous picture over Europe, Africa, Asia and North America. The so-called “neutral years” are not neutral, but are associated with strong sea surface temperature anomalies in global oceans outside the tropical Pacific, and significant anomalies of land surface air temperature and precipitation over all the continents.

     
    more » « less
  3. Abstract

    In recent years, harmful algal blooms (HABs) have increased in their severity and extent in many parts of the world and pose serious threats to local aquaculture, fisheries, and public health. In many cases, the mechanisms triggering and regulating HAB events remain poorly understood. Using underwater microscopy and Residual Neural Network (ResNet‐18) to taxonomically classify imaged organisms, we developed a daily abundance record of four potentially harmful algae (Akashiwo sanguinea,Chattonellaspp.,Dinophysisspp., andLingulodinium polyedra) and major grazer groups (ciliates, copepod nauplii, and copepods) from August 2017 to November 2020 at Scripps Institution of Oceanography pier, a coastal location in the Southern California Bight. Random Forest algorithms were used to identify the optimal combination of environmental and ecological variables that produced the most accurate abundance predictions for each taxon. We developed models with high prediction accuracy forA. sanguinea(),Chattonellaspp. (), andL. polyedra(), whereas models forDinophysisspp. showed lower prediction accuracy (). Offshore nutricline depth and indices describing climate variability, including El Niño Southern Oscillation, Pacific Decadal Oscillation, and North Pacific Gyre Oscillation, that influence regional‐scale ocean circulation patterns and environmental conditions, were key predictor variables for these HAB taxa. These metrics of regional‐scale processes were generally better predictors of HAB taxa abundances at this coastal location than the in situ environmental measurements. Ciliate abundance was an important predictor ofChattonellaandDinophysisspp., but not ofA. sanguineaandL. polyedra. Our findings indicate that combining regional and local environmental factors with microzooplankton populations dynamics can improve real‐time HAB abundance forecasts.

     
    more » « less
  4. Drought is a prominent feature of Hawaiʻi’s climate. However, it has been over 30 years since the last comprehensive meteorological drought analysis, and recent drying trends have emphasized the need to better understand drought dynamics and multi-sector effects in Hawaiʻi. Here, we provide a comprehensive synthesis of past drought effects in Hawaiʻi that we integrate with geospatial analysis of drought characteristics using a newly developed 100-year (1920–2019) gridded Standardized Precipitation Index (SPI) dataset. The synthesis examines past droughts classified into five categories: Meteorological, agricultural, hydrological, ecological, and socioeconomic drought. Results show that drought duration and magnitude have increased significantly, consistent with trends found in other Pacific Islands. We found that most droughts were associated with El Niño events, and the two worst droughts of the past century were multi-year events occurring in 1998–2002 and 2007–2014. The former event was most severe on the islands of O’ahu and Kaua’i while the latter event was most severe on Hawaiʻi Island. Within islands, we found different spatial patterns depending on leeward versus windward contrasts. Droughts have resulted in over $80 million in agricultural relief since 1996 and have increased wildfire risk, especially during El Niño years. In addition to providing the historical context needed to better understand future drought projections and to develop effective policies and management strategies to protect natural, cultural, hydrological, and agricultural resources, this work provides a framework for conducting drought analyses in other tropical island systems, especially those with a complex topography and strong climatic gradients. 
    more » « less
  5. Abstract

    Lightning occurring with less than 2.5 mm of rainfall—typically referred to as ‘dry lightning’—is a major source of wildfire ignition in central and northern California. Despite being rare, dry lightning outbreaks have resulted in destructive fires in this region due to the intersection of dense, dry vegetation and a large population living adjacent to fire-prone lands. Since thunderstorms are much less common in this region relative to the interior West, the climatology and drivers of dry lightning have not been widely investigated in central and northern California. Using daily gridded lightning and precipitation observations (1987–2020) in combination with atmospheric reanalyses, we characterize the climatology of dry lightning and the associated meteorological conditions during the warm season (May–October) when wildfire risk is highest. Across the domain, nearly half (∼46%) of all cloud-to-ground lightning flashes occurred as dry lightning during the study period. We find that higher elevations (>2000 m) receive more dry lightning compared to lower elevations (<1000 m) with activity concentrated in July-August. Although local meteorological conditions show substantial spatial variation, we find regionwide enhancements in mid-tropospheric moisture and instability on dry lightning days relative to background climatology. Additionally, surface temperatures, lower-tropospheric dryness, and mid-tropospheric instability are increased across the region on dry versus wet lightning days. We also identify widespread dry lightning outbreaks in the historical record, quantify their seasonality and spatial extent, and analyze associated large-scale atmospheric patterns. Three of these four atmospheric patterns are characterized by different configurations of ridging over the continental interior and offshore troughing. Understanding the meteorology of dry lightning across this region can inform forecasting of possible wildfire ignitions and is relevant for assessing changes in dry lightning and wildfire risk in climate projections.

     
    more » « less