skip to main content


Title: Comparison between Core-collapse Supernova Nucleosynthesis and Meteoric Stardust Grains: Investigating Magnesium, Aluminium, and Chromium
Abstract Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al.  more » « less
Award ID(s):
1927130
NSF-PAR ID:
10358256
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Models of subduction zone magmatism ascribe the andesitic composition of arc magmas to crustal processes, such as crustal assimilation and/or fractional crystallization, that basaltic mantle melts experience during their ascent through the upper plate crust. However, results from time series study of olivine-phyric high-Nb basalts and basaltic andesites from two monogenetic arc volcanoes (V. Chichinautzin and Texcal Flow) that are constructed on the ~45 km thick continental basement of the central Transmexican Volcanic Belt (TMVB) are inconsistent with this model. Instead, ratios of radiogenic isotope and incompatible trace elements suggest that these volcanoes were constructed through multiple individual melt batches ascending from a progressively changing mantle source. Moreover, the high Ni contents of the olivine phenocrysts, together with their high mantle-like 3He/4Heoliv =7-8 Ra with high crustal δ18O oliv = +5.5 to +6.5‰ (n=12) point to the presence of secondary ‘reaction pyroxenites’ in the mantle source that create primary silicic arc magmas through melt-rock reaction processes in the mantle [1, 2] . Here we present additional trace element concentration of the high-Ni olivines by electron microprobe (Mn, Ca) and laser-ablation ICPMS (Li, Cr and V) analysis in order to test this model. Olivine Li (2-7 ppm) and Mn (1170- 2810 ppm) increase with decreasing fosterite (Fo89 to Fo75), while Cr (29-364 ppm), V (4-11 ppm) and Ca (825-2390 ppm) decrease. Quantitative modeling shows that these trends in their entirety cannot be controlled by fractional crystallization under variable melt water H2O or oxygen fugacity (fO2), or co-crystallization of Cr-spinel. Instead, the variations support the existence of compositionally distinct melt batches during earliest melt evolution. Moreover, the trace element trends are qualitatively consistent with a model of progressive source depletion by serial melting (shown in olivine Ca, V and Cr) that is triggered by the repetitive addition of silicic slab components (shown by olivine Li). These findings suggest mantle source variations are not eliminated despite the thick crust these magmas pass during ascent. [1] Straub et al. (2013) J Petrol 54 (4): 665-701; [2] Straub et al. (2015) Geochim Cosmochim Acta 166: 29-52. 
    more » « less
  2. Abstract Textural and compositional variations in titanite constrain the roles of magma mixing and hydrothermal alteration in two plutons in central Utah: the Jurassic Notch Peak and the Oligocene Little Cottonwood stocks. In the Notch Peak intrusion, magmatic titanite grains usually have oscillatory zones combined with BSE-bright sector zones, in some cases surrounding simple unzoned cores. These grains are frequently overprinted by hydrothermal titanite with low concentrations of high field strength elements (HFSE). Magmatic titanite has an average δ18O of 6.0‰ and post-magmatic titanite is 6.2‰, as analyzed by SIMS. Average Zr-in-titanite temperatures are also similar, with 718 °C for magmatic and 711 °C for hydrothermal titanite. These observations indicate simple magmatic growth, followed by hydrothermal alteration by magmatic fluids. Titanite in aplite dikes and sills has lower concentrations of all trace elements except F. Many titanite grains in the aplites have late overgrowths of high-Fe titanite. This high-Fe titanite has δ18O of 6‰ and an average Zr-in-titanite temperature of 718 °C and likely precipitated from a last flush of exsolved magmatic water enriched in Cl and Fe. Titanite in the Little Cottonwood stock typically has distinct patchy cores with rounded and embayed ilmenite inclusions. Mafic enclaves have abundant titanite that is similar in texture and δ18O (5.1‰) to titanite in the host (δ18O = 4.9‰), but it has a slightly higher average Zr-in-titanite temperature (731 vs. 717 °C). The patchy cores in the enclaves have the highest average Zr-in-titanite temperature (759 °C) and distinctive REE patterns. The textural and compositional data indicate that a hotter, more reduced, ilmenite-bearing mafic magma mixed into an oxidized felsic magma, destabilizing existing ilmenite and allowing crystallization of titanite. In the granodiorite and in the enclaves, hydrothermal growth of titanite is evidenced by distinct narrow rims as well as anhedral titanite that grew between sheets of chloritized biotite. Secondary hydrothermal titanite typically has lower concentrations of most HFSE, but is relatively enriched in F, Mg, Mo, and U, and it has higher Nb/Ta and lower Th/U ratios. Post-magmatic titanite also has strikingly different REE patterns than magmatic titanite, including the absence of pronounced Eu anomalies and lower REE abundances. These chemical features are controlled by element solubilities in aqueous fluids. In most cases, hydrothermal titanite has δ18O values similar to magmatic titanite, indicating alteration and recrystallization from exsolved magmatic fluids. The involvement of meteoric water with low δ18O is evident locally; individual spots have δ18O as low as 1.7‰ in the Little Cottonwood stock. Titanite compositions and textures provide important insights into the origins of granitic rocks and can be used to distinguish separate batches of magma, gauge the evolution of magmatic rocks, assess mixing processes, and infer compositions of mixing components. Because titanite also forms hydrothermally, it retains hints about the composition, temperature, and oxygen fugacity of the hydrothermal fluids and reveals details about titanite-forming reactions. However, the Al-in-titanite geobarometer does not yield realistic pressures of crystallization and the use of titanite as a geochronometer is compromised by the development of U-rich hydrothermal titanite. 
    more » « less
  3. Abstract

    We report C, N, Mg-Al, Si, and S isotope data of six 1–3μm-sized SiC grains of Type X from the Murchison CM2 chondrite, believed to have formed in the ejecta of core-collapse supernova (CCSN) explosions. Their C, N, and Si isotopic compositions are fully compatible with previously studied X grains. Magnesium is essentially monoisotopic26Mg which gives clear evidence for the decay of radioactive26Al. Inferred initial26Al/27Al ratios are between 0.6 and 0.78 which is at the upper end of previously observed ratios of X grains. Contamination with terrestrial or solar system Al apparently is low or absent, which makes the X grains from this study particularly interesting and useful for a quantitative comparison of Al isotope data with predictions from supernova models. The consistently high26Al/27Al ratios observed here may suggest that the lower26Al/27Al ratios of many X grains from the literature are the result of significant Al contamination and in part also of an improper quantification of26Al. The real dispersion of26Al/27Al ratios in X grains needs to be explored by future studies. The high observed26Al/27Al ratios in this work provide a crucial constraint for the production of26Al in CCSN models. We explored different CCSN models, including both “classical” and H ingestion CCSN models. It is found that the classical models cannot account for the high26Al/27Al ratios observed here; in contrast, H ingestion models are able to reproduce the26Al/27Al ratios along with C, N, and Si isotopic ratios reasonably well.

     
    more » « less
  4. Abstract Detrital chromites are commonly reported within Archean metasedimentary rocks, but have thus far garnered little attention for use in provenance studies. Systematic variations of Cr–Fe spinel mineral chemistry with changing tectonic setting have resulted in the extensive use of chromite as a petrogenetic indicator, and so detrital chromites represent good candidates to investigate the petrogenesis of eroded Archean mafic and ultramafic crust. Here, we report the compositions of detrital chromites within fuchsitic (Cr-muscovite rich) metasedimentary rocks from the Jack Hills, situated within the Narryer Terrane, Yilgarn Craton, Western Australia, which are geologically renowned for hosting Hadean (>4000 Ma) zircons. We highlight signatures of metamorphism, including highly elevated ZnO and MnO, coupled with lowered Mg# in comparison with magmatic chromites, development of pitted domains, and replacement of primary inclusions by phases that are part of the metamorphic assemblages within host metasedimentary rocks. Oxygen isotope compositions of detrital chromites record variable exchange with host metasedimentary rocks. The variability of metamorphic signatures between chromites sampled only meters apart further indicates that modification occurred in situ by interaction of detrital chromites with metamorphic fluids and secondary mineral assemblages. Alteration probably occurred during upper greenschist to lower amphibolite facies metamorphism and deformation of host metasedimentary rocks at ∼2650 Ma. Regardless of metamorphic signatures, sampling location or grain shape, chromite cores yield a consistent range in Cr#. Although other key petrogenetic indices, such as Fe2O3 and TiO2 contents, are complicated in Jack Hills chromites by mineral non-stoichiometry and secondary mobility within metasedimentary rocks, we demonstrate that the Cr# of chromite yields significant insights into their provenance. Importantly, moderate Cr# (typically 55–70) precludes a komatiitic origin for the bulk of chromites, reflecting a dearth of komatiites and intrusive equivalents within the erosional catchment of the Jack Hills metasedimentary units. We suggest that the Cr# of Jack Hills chromite fits well with chromites derived from layered intrusions, and that a single layered intrusion may account for the observed chemical compositions of Jack Hills detrital chromites. Where detailed characterization of key metamorphic signatures is undertaken, detrital chromites preserved within Archean metasedimentary rocks may therefore yield valuable information on the petrogenesis and geodynamic setting of poorly preserved mafic and ultramafic crust. 
    more » « less
  5. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less