This content will become publicly available on March 1, 2023
- Award ID(s):
- 1927130
- Publication Date:
- NSF-PAR ID:
- 10358256
- Journal Name:
- The Astrophysical Journal
- Volume:
- 927
- Issue:
- 2
- Page Range or eLocation-ID:
- 220
- ISSN:
- 0004-637X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Models of subduction zone magmatism ascribe the andesitic composition of arc magmas to crustal processes, such as crustal assimilation and/or fractional crystallization, that basaltic mantle melts experience during their ascent through the upper plate crust. However, results from time series study of olivine-phyric high-Nb basalts and basaltic andesites from two monogenetic arc volcanoes (V. Chichinautzin and Texcal Flow) that are constructed on the ~45 km thick continental basement of the central Transmexican Volcanic Belt (TMVB) are inconsistent with this model. Instead, ratios of radiogenic isotope and incompatible trace elements suggest that these volcanoes were constructed through multiple individual melt batches ascending from a progressively changing mantle source. Moreover, the high Ni contents of the olivine phenocrysts, together with their high mantle-like 3He/4Heoliv =7-8 Ra with high crustal δ18O oliv = +5.5 to +6.5‰ (n=12) point to the presence of secondary ‘reaction pyroxenites’ in the mantle source that create primary silicic arc magmas through melt-rock reaction processes in the mantle [1, 2] . Here we present additional trace element concentration of the high-Ni olivines by electron microprobe (Mn, Ca) and laser-ablation ICPMS (Li, Cr and V) analysis in order to test this model. Olivine Li (2-7 ppm) and Mn (1170- 2810more »
-
Abstract We report C, N, Mg-Al, Si, and S isotope data of six 1–3
μ m-sized SiC grains of Type X from the Murchison CM2 chondrite, believed to have formed in the ejecta of core-collapse supernova (CCSN) explosions. Their C, N, and Si isotopic compositions are fully compatible with previously studied X grains. Magnesium is essentially monoisotopic26Mg which gives clear evidence for the decay of radioactive26Al. Inferred initial26Al/27Al ratios are between 0.6 and 0.78 which is at the upper end of previously observed ratios of X grains. Contamination with terrestrial or solar system Al apparently is low or absent, which makes the X grains from this study particularly interesting and useful for a quantitative comparison of Al isotope data with predictions from supernova models. The consistently high26Al/27Al ratios observed here may suggest that the lower26Al/27Al ratios of many X grains from the literature are the result of significant Al contamination and in part also of an improper quantification of26Al. The real dispersion of26Al/27Al ratios in X grains needs to be explored by future studies. The high observed26Al/27Al ratios in this work provide a crucial constraint for the production of26Al in CCSN models. We explored different CCSN models, including both “classical” and Hmore » -
Abstract
Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters -
Abstract Detrital chromites are commonly reported within Archean metasedimentary rocks, but have thus far garnered little attention for use in provenance studies. Systematic variations of Cr–Fe spinel mineral chemistry with changing tectonic setting have resulted in the extensive use of chromite as a petrogenetic indicator, and so detrital chromites represent good candidates to investigate the petrogenesis of eroded Archean mafic and ultramafic crust. Here, we report the compositions of detrital chromites within fuchsitic (Cr-muscovite rich) metasedimentary rocks from the Jack Hills, situated within the Narryer Terrane, Yilgarn Craton, Western Australia, which are geologically renowned for hosting Hadean (>4000 Ma) zircons. We highlight signatures of metamorphism, including highly elevated ZnO and MnO, coupled with lowered Mg# in comparison with magmatic chromites, development of pitted domains, and replacement of primary inclusions by phases that are part of the metamorphic assemblages within host metasedimentary rocks. Oxygen isotope compositions of detrital chromites record variable exchange with host metasedimentary rocks. The variability of metamorphic signatures between chromites sampled only meters apart further indicates that modification occurred in situ by interaction of detrital chromites with metamorphic fluids and secondary mineral assemblages. Alteration probably occurred during upper greenschist to lower amphibolite facies metamorphism and deformation of host metasedimentarymore »
-
Dynamic models of the protoplanetary disk indicate there should be large-scale material transport in and out of the inner Solar System, but direct evidence for such transport is scarce. Here we show that the ε 50 Ti-ε 54 Cr-Δ 17 O systematics of large individual chondrules, which typically formed 2 to 3 My after the formation of the first solids in the Solar System, indicate certain meteorites (CV and CK chondrites) that formed in the outer Solar System accreted an assortment of both inner and outer Solar System materials, as well as material previously unidentified through the analysis of bulk meteorites. Mixing with primordial refractory components reveals a “missing reservoir” that bridges the gap between inner and outer Solar System materials. We also observe chondrules with positive ε 50 Ti and ε 54 Cr plot with a constant offset below the primitive chondrule mineral line (PCM), indicating that they are on the slope ∼1.0 in the oxygen three-isotope diagram. In contrast, chondrules with negative ε 50 Ti and ε 54 Cr increasingly deviate above from PCM line with increasing δ 18 O, suggesting that they are on a mixing trend with an ordinary chondrite-like isotope reservoir. Furthermore, the Δ 17more »