skip to main content


Title: Obstacle Avoidance Path Planning for Worm-like Robot Using Bézier Curve
Worm-like robots have demonstrated great potential in navigating through environments requiring body shape deformation. Some examples include navigating within a network of pipes, crawling through rubble for search and rescue operations, and medical applications such as endoscopy and colonoscopy. In this work, we developed path planning optimization techniques and obstacle avoidance algorithms for the peristaltic method of locomotion of worm-like robots. Based on our previous path generation study using a modified rapidly exploring random tree (RRT), we have further introduced the Bézier curve to allow more path optimization flexibility. Using Bézier curves, the path planner can explore more areas and gain more flexibility to make the path smoother. We have calculated the obstacle avoidance limitations during turning tests for a six-segment robot with the developed path planning algorithm. Based on the results of our robot simulation, we determined a safe turning clearance distance with a six-body diameter between the robot and the obstacles. When the clearance is less than this value, additional methods such as backward locomotion may need to be applied for paths with high obstacle offset. Furthermore, for a worm-like robot, the paths of subsequent segments will be slightly different than the path of the head segment. Here, we show that as the number of segments increases, the differences between the head path and tail path increase, necessitating greater lateral clearance margins.  more » « less
Award ID(s):
1850168
NSF-PAR ID:
10358310
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biomimetics
Volume:
6
Issue:
4
ISSN:
2313-7673
Page Range / eLocation ID:
57
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Legged robots have a unique capability of traversing rough terrains and negotiating cluttered environments. Recent control development of legged robots has enabled robust locomotion on rough terrains. However, such approaches mainly focus on maintaining balance for the robot body. In this work, we are interested in leveraging the whole body of the robot to pass through a permeable obstacle (e.g., a small confined opening) with height, width, and terrain constraints. This paper presents a planning framework for legged robots manipulating their body and legs to perform collision-free locomotion through a permeable obstacle. The planner incorporates quadrupedal gait constraint, biasing scheme, and safety margin for the simultaneous body and foothold motion planning. We perform informed sampling for the body poses and swing foot position based on the gait constraint while ensuring stability and collision avoidance. The footholds are planned based on the terrain and the contact constraint. We also integrate the planner with robot control to execute the planned trajectory successfully. We validated our approach in high-fidelity simulation and hardware experiments on the Unitree A1 robot navigating through different representative permeable obstacles. 
    more » « less
  2. null (Ed.)
    Inspired by earthworms, worm-like robots use peristaltic waves to locomote. While there has been research on generating and optimizing the peristalsis wave, path planning for such worm-like robots has not been well explored. In this paper, we evaluate rapidly exploring random tree (RRT) algorithms for path planning in worm-like robots. The kinematics of peristaltic locomotion constrain the potential for turning in a non-holonomic way if slip is avoided. Here we show that adding an elliptical path generating algorithm, especially a two-step enhanced algorithm that searches path both forward and backward simultaneously, can make planning such waves feasible and efficient by reducing required iterations by up around 2 orders of magnitude. With this path planner, it is possible to calculate the number of waves to get to arbitrary combinations of position and orientation in a space. This reveals boundaries in configuration space that can be used to determine whether to continue forward or back-up before maneuvering, as in the worm-like equivalent of parallel parking. The high number of waves required to shift the body laterally by even a single body width suggests that strategies for lateral motion, planning around obstacles and responsive behaviors will be important for future worm-like robots. 
    more » « less
  3. In this paper, we examine the problem of push recovery for bipedal robot locomotion and present a reactive decision-making and robust planning framework for locomotion resilient to external perturbations. Rejecting perturbations is an essential capability of bipedal robots and has been widely studied in the locomotion literature. However, adversarial disturbances and aggressive turning can lead to negative lateral step width (i.e., crossed-leg scenarios) with unstable motions and self-collision risks. These motion planning problems are computationally difficult and have not been explored under a hierarchically integrated task and motion planning method. We explore a planning and decision-making framework that closely ties linear-temporal-logic-based reactive synthesis with trajectory optimization incorporating the robot’s full-body dynamics, kinematics, and leg collision avoidance constraints. Between the high-level discrete symbolic decision-making and the low-level continuous motion planning, behavior trees serve as a reactive interface to handle perturbations occurring at any time of the locomotion process. Our experimental results show the efficacy of our method in generating resilient recovery behaviors in response to diverse perturbations from any direction with bounded magnitudes. 
    more » « less
  4. Snake robotics is an important research topic with a wide range of applications, including inspection in confined spaces, search-and-rescue, and disaster response. Snake robots are well-suited to these applications because of their versatility and adaptability to unstructured and constrained environments. In this paper, we introduce a soft pneumatic robotic snake that can imitate the capabilities of biological snakes, its soft body can provide flexibility and adaptability to the environment. This paper combines soft mobile robot modeling, proprioceptive feedback control, and motion planning to pave the way for functional soft robotic snake autonomy. We propose a pressure-operated soft robotic snake with a high degree of modularity that makes use of customized embedded flexible curvature sensing. On this platform, we introduce the use of iterative learning control using feedback from the on-board curvature sensors to enable the snake to automatically correct its gait for superior locomotion. We also present a motion planning and trajectory tracking algorithm using an adaptive bounding box, which allows for efficient motion planning that still takes into account the kinematic state of the soft robotic snake. We test this algorithm experimentally, and demonstrate its performance in obstacle avoidance scenarios. 
    more » « less
  5. Soft robots that can harvest energy from environmental resources for autonomous locomotion is highly desired; however, few are capable of adaptive navigation without human interventions. Here, we report twisting soft robots with embodied physical intelligence for adaptive, intelligent autonomous locomotion in various unstructured environments, without on-board or external controls and human interventions. The soft robots are constructed of twisted thermal-responsive liquid crystal elastomer ribbons with a straight centerline. They can harvest thermal energy from environments to roll on outdoor hard surfaces and challenging granular substrates without slip, including ascending loose sandy slopes, crossing sand ripples, escaping from burying sand, and crossing rocks with additional camouflaging features. The twisting body provides anchoring functionality by burrowing into loose sand. When encountering obstacles, they can either self-turn or self-snap for obstacle negotiation and avoidance. Theoretical models and finite element simulation reveal that such physical intelligence is achieved by spontaneously snapping-through its soft body upon active and adaptive soft body-obstacle interactions. Utilizing this strategy, they can intelligently escape from confined spaces and maze-like obstacle courses without any human intervention. This work presents a de novo design of embodied physical intelligence by harnessing the twisting geometry and snap-through instability for adaptive soft robot-environment interactions. 
    more » « less