skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Type Iax supernovae from deflagrations in Chandrasekhar mass white dwarfs
Context. Due to the ever increasing number of observations during the past decades, Type Ia supernovae are nowadays regarded as a heterogeneous class of optical transients consisting of several subtypes. One of the largest of these subclasses is the class of Type Iax supernovae. They have been suggested to originate from pure deflagrations in carbon-oxygen Chandrasekhar mass white dwarfs because the outcome of this explosion scenario is in general agreement with their subluminous nature. Aims. Although a few deflagration studies have already been carried out, the full diversity of the class has not been captured yet. This, in particular, holds for the faint end of the subclass. We therefore present a parameter study of single-spot ignited deflagrations in Chandrasekhar mass white dwarfs varying the location of the ignition spark, the central density, the metallicity, and the composition of the white dwarf. We also explore a rigidly rotating progenitor to investigate whether the effect of rotation can spawn additional trends. Methods. We carried out three-dimensional hydrodynamic simulations employing the LEAFS code. Subsequently, detailed nucleosynthesis results were obtained with the nuclear network code YANN . In order to compare our results to observations, we calculated synthetic spectra and light curves with the ARTIS code. Results. The new set of models extends the range in brightness covered by previous studies to the lower end. Our single-spot ignited explosions produce 56 Ni masses from 5.8 × 10 −3 to 9.2 × 10 −2   M ⊙ . In spite of the wide exploration of the parameter space, the main characteristics of the models are primarily driven by the mass of 56 Ni and form a one-dimensional sequence. Secondary parameters seem to have too little impact to explain the observed trend in the faint part of the Type Iax supernova class. We report kick velocities of the gravitationally bound explosion remnants from 6.9 to 369.8 km s −1 . The magnitude as well as the direction of the natal kick is found to depend on the strength of the deflagration. Conclusions. This work corroborates the results of previous studies of deflagrations in Chandrasekhar mass white dwarfs. The wide exploration of the parameter space in initial conditions and viewing angle effects in the radiative transfer lead to a significant spread in the synthetic observables. The trends in observational properties toward the faint end of the class are, however, not reproduced. This motivates a quantification of the systematic uncertainties in the modeling procedure and the influence of the 56 Ni-rich bound remnant to get to the bottom of these discrepancies. Moreover, while the pure deflagration scenario remains a favorable explanation for bright and intermediate luminosity Type Iax supernovae, our results suggest that other mechanisms also contribute to this class of events.  more » « less
Award ID(s):
1927130
PAR ID:
10358345
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
658
ISSN:
0004-6361
Page Range / eLocation ID:
A179
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past decades, many explosion scenarios for Type Ia supernovae have been proposed and investigated including various combinations of deflagrations and detonations in white dwarfs of different masses up to the Chandrasekhar mass. One of these is the gravitationally confined detonation model. In this case a weak deflagration burns to the surface, wraps around the bound core, and collides at the antipode. A subsequent detonation is then initiated in the collision area. Since the parameter space for this scenario, that is, varying central densities and ignition geometries, has not been studied in detail, we used pure deflagration models of a previous parameter study dedicated to Type Iax supernovae as initial models to investigate the gravitationally confined detonation scenario. We aim to judge whether this channel can account for one of the many subgroups of Type Ia supernovae, or even normal events. To this end, we employed a comprehensive pipeline for three-dimensional Type Ia supernova modeling that consists of hydrodynamic explosion simulations, nuclear network calculations, and radiative transfer. The observables extracted from the radiative transfer are then compared to observed light curves and spectra. The study produces a wide range in masses of synthesized 56 Ni ranging from 0.257 to 1.057  M ⊙ , and, thus, can potentially account for subluminous as well as overluminous Type Ia supernovae in terms of brightness. However, a rough agreement with observed light curves and spectra can only be found for 91T-like objects. Although several discrepancies remain, we conclude that the gravitationally confined detonation model cannot be ruled out as a mechanism to produce 91T-like objects. However, the models do not provide a good explanation for either normal Type Ia supernovae or Type Iax supernovae. 
    more » « less
  2. Abstract We present the optical photometric and spectroscopic analysis of two Type Iax supernovae (SNe), 2018cni and 2020kyg. SN 2018cni is a bright Type Iax SN ( M V ,peak = −17.81 ± 0.21 mag), whereas SN 2020kyg ( M V ,peak = −14.52 ± 0.21 mag) is a faint one. We derive 56 Ni mass of 0.07 and 0.002 M ⊙ and ejecta mass of 0.48 and 0.14 M ⊙ for SNe 2018cni and 2020kyg, respectively. A combined study of the bright and faint Type Iax SNe in R / r -band reveals that the brighter objects tend to have a longer rise time. However, the correlation between the peak luminosity and decline rate shows that bright and faint Type Iax SNe exhibit distinct behavior. Comparison with standard deflagration models suggests that SN 2018cni is consistent with the deflagration of a CO white dwarf, whereas the properties of SN 2020kyg can be better explained by the deflagration of a hybrid CONe white dwarf. The spectral features of both the SNe point to the presence of similar chemical species but with different mass fractions. Our spectral modeling indicates stratification at the outer layers and mixed inner ejecta for both of the SNe. 
    more » « less
  3. null (Ed.)
    We analyze the nucleosynthesis yields of various Type Ia supernova explosion simulations including pure detonations in sub-Chandrasekhar mass white dwarfs; double detonations and pure helium detonations of sub-Chandrasekhar mass white dwarfs with an accreted helium envelope; a violent merger model of two white dwarfs; and deflagrations and delayed detonations in Chandrasekhar mass white dwarfs. We focus on the iron peak elements Mn, Zn, and Cu. To this end, we also briefly review the different burning regimes and production sites of these elements, as well as the results of abundance measurements and several galactic chemical evolution studies. We find that super-solar values of [Mn/Fe] are not restricted to Chandrasekhar mass explosion models. Scenarios including a helium detonation can significantly contribute to the production of Mn, in particular the models proposed for calcium-rich transients. Although Type Ia supernovae are often not accounted for as production sites of Zn and Cu, our models involving helium shell detonations can produce these elements in super-solar ratios relative to Fe. Our results suggest a re-consideration of Type Ia supernova yields in galactic chemical evolution models. A detailed comparison with observations can provide new insight into the progenitor and explosion channels of these events. 
    more » « less
  4. Abstract Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. usingTARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away. 
    more » « less
  5. ABSTRACT We present optical photometric and spectroscopic analysis of a Type Iax supernova (SN) 2020rea situated at the brighter luminosity end of Type Iax supernovae (SNe). The light curve decline rate of SN 2020rea is Δm15(g)  = 1.31 ± 0.08 mag which is similar to SNe 2012Z and 2005hk. Modelling the pseudo-bolometric light curve with a radiation diffusion model yields a mass of 56Ni of 0.13 ± 0.01 M⊙ and an ejecta mass of 0.77$$^{+0.11}_{-0.21}$$ M⊙. Spectral features of SN 2020rea during the photospheric phase show good resemblance with SN 2012Z. TARDIS modelling of the early spectra of SN 2020rea reveals a dominance of Iron Group Elements (IGEs). The photospheric velocity of the Si ii line around maximum for SN 2020rea is ∼ 6500 km s−1 which is less than the measured velocity of the Fe ii line and indicates significant mixing. The observed physical properties of SN 2020rea match with the predictions of pure deflagration model of a Chandrasekhar mass C–O white dwarf. The metallicity of the host galaxy around the SN region is 12 + log(O/H)  = 8.56 ± 0.18 dex which is similar to that of SN 2012Z. 
    more » « less