skip to main content


Title: Development of Educational Modules to Assess Flood Risk and Mitigation Strategies for Coastal Communities
Coastal Communities are exposed to multiple hazards including hurricanes, storm surges, waves, and riverine flash floods. This paper presents the outcome of a Basin-wide Flood Multi-hazard Risks module that was developed and offered as part of a collaboration between two research projects: the UPRM-DHS Coastal Resilience Center of Excellence (CRC) funded by the Department of Homeland Security and the Resilient Infrastructure and Sustainability Education Undergraduate Program (RISE-UP) funded by the National Science Foundation (NSF). The content was designed to give students an understanding of complex project management in coastal communities. The main learning objective was for students to be able to assess and recognize the actions that can be taken to improve resiliency in coastal communities. Students learned how to manage multi-hazard floods. Through knowledge gained by participating in lectures, discussions, and the development of case studies, students were able to assess flood risk and current mitigation strategies for coastal communities in Puerto Rico. The learning experience provided an overview of the history, needs, and challenges that coastal communities face regarding flood and coastal hazards. Through the case studies, students were able to appreciate and understand the risk exposure on the natural and built infrastructure, and the importance of always taking into consideration the social impact.  more » « less
Award ID(s):
1832468
NSF-PAR ID:
10358371
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society for Engineering Education Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Floods are among the most destructive natural hazard that affect millions of people across the world leading to severe loss of life and damage to property, critical infrastructure, and agriculture. Internet of Things (IoTs), machine learning (ML), and Big Data are exceptionally valuable tools for collecting the catastrophic readiness and countless actionable data. The aim of this presentation is to introduce Flood Analytics Information System (FAIS) as a data gathering and analytics system. FAIS application is smartly designed to integrate crowd intelligence, ML, and natural language processing of tweets to provide warning with the aim to improve flood situational awareness and risk assessment. FAIS has been Beta tested during major hurricane events in US where successive storms made extensive damage and disruption. The prototype successfully identifies a dynamic set of at-risk locations/communities using the USGS river gauge height readings and geotagged tweets intersected with watershed boundary. The list of prioritized locations can be updated, as the river monitoring system and condition change over time (typically every 15 minutes). The prototype also performs flood frequency analysis (FFA) using various probability distributions with the associated uncertainty estimation to assist engineers in designing safe structures. This presentation will discuss about the FAIS functionalities and real-time implementation of the prototype across south and southeast USA. This research is funded by the US National Science Foundation (NSF). 
    more » « less
  2. Ingenuity for El Ingenio is a case study to address the challenges that marginalized communities in Puerto Rico suffer, mostly from natural hazards, due to settlements in high-risk areas and deteriorating infrastructure. The case study was developed by an interdisciplinary group of students from the University of Puerto Rico - Río Piedras School of Architecture and students from the Department of Civil Engineering and Surveying and the Department of Electrical Engineering at the University of Puerto Rico - Mayagüez, as part of the course “Design-Build Project Delivery” in the RISE-UP program. The project contemplated spaces for a family/group of four people, in the neighborhood Ingenio in Toa Baja, Puerto Rico, which is a community exposed to multiple natural hazards including hurricanes, earthquakes, and floods. The design parameters for the project included a set budget of $40,000 USD for the construction of four temporary housing units, requirement to withstand the impact of multiple natural hazards, as well as being simple to build and be able to operate independent to power and water grids during an emergency. The resulting design provides 270 sq ft. of usable space and can partially function off the grid due to solar energy generation and water storage. Local materials were implemented, and a manual of components and suggested construction methods was developed. This experience showcases the benefits that an interdisciplinary-integrated approach to infrastructure design can have on producing rapid and efficient design solutions to challenges caused by natural hazards, in resilient and sustainable ways. 
    more » « less
  3. Abstract. Megacities are predominantlyconcentrated along coastlines, making them exposed to a diverse mix ofnatural hazards. The assessment of climatic hazard risk to cities rarely hascaptured the multiple interactions that occur in complex urban systems. Wepresent an improved method for urban multi-hazard risk assessment. We thenanalyze the risk of New York City as a case study to apply enhanced methodsfor multi-hazard risk assessment given the history of exposure to multipletypes of natural hazards which overlap spatially and, in some cases,temporally in this coastal megacity. Our aim is to identify hotspots ofmulti-hazard risk to support the prioritization of adaptation strategies thatcan address multiple sources of risk to urban residents. We usedsocioeconomic indicators to assess vulnerabilities and risks to threeclimate-related hazards (i.e., heat waves, inland flooding and coastal flooding) at high spatial resolution.The analysis incorporates local experts' opinions to identify sources ofmulti-hazard risk and to weight indicators used in the multi-hazard riskassessment. Results demonstrate the application of multi-hazard riskassessment to a coastal megacity and show that spatial hotspots ofmulti-hazard risk affect similar local residential communities along thecoastlines. Analyses suggest that New York City should prioritize adaptationin coastal zones and consider possible synergies and/or trade-offs tomaximize impacts of adaptation and resilience interventions in the spatiallyoverlapping areas at risk of impacts from multiple hazards.

     
    more » « less
  4. Abstract

    Globally, coastal communities experience flood hazards that are projected to worsen from climate change and sea level rise. The 100-year floodplain or record flood are commonly used to identify risk areas for planning purposes. Remote communities often lack measured flood elevations and require innovative approaches to estimate flood elevations. This study employs observation-based methods to estimate the record flood elevation in Alaska communities and compares results to elevation models, infrastructure locations, and sea level rise projections. In 46 analyzed communities, 22% of structures are located within the record floodplain. With sea level rise projections, this estimate increases to 30–37% of structures by 2100 if structures remain in the same location. Flood exposure is highest in western Alaska. Sea level rise projections suggest northern Alaska will see similar flood exposure levels by 2100 as currently experienced in western Alaska. This evaluation of record flood height, category, and history can be incorporated into hazard planning documents, providing more context for coastal flood exposure than previously existed for Alaska. This basic flood exposure method is transferable to other areas with similar mapping challenges. Identifying current and projected hazardous zones is essential to avoid unintentional development in floodplains and improve long-term safety.

     
    more » « less
  5. Abstract

    Dry and wet extremes (i.e., droughts and floods) are the costliest hydrologic hazards for infrastructure and socio-environmental systems. Being closely interconnected and interdependent extremes of the same hydrological cycle, they often occur in close succession with the potential to exacerbate hydrologic risks. However, traditionally this is ignored and both hazards are considered separately in hydrologic risk assessments; this can lead to an underestimation of critical infrastructure risks (e.g., dams, levees, dikes, and reservoirs). Here, we identify and characterize consecutive dry and wet extreme (CDW) events using the Standardized Precipitation Evapotranspiration Index, assess their multi-hazard hydrologic risks employing copula models, and investigate teleconnections with large-scale climate variability. We identify hotspots of CDW events in North America, Europe, and Australia where the total numbers of CDW events range from 20 to 30 from 1901 to 2015. Decreasing trends in recovery time (i.e., time between termination of dry extreme and onset of wet extreme) and increasing trends in dry and wet extreme severities reveal the intensification of CDW events over time. We quantify that the joint exceedance probabilities of dry and wet extreme severities equivalent to 50-year and 100-year univariate return periods increase by several folds (up to 20 and 54 for 50-year and 100-year return periods, respectively) when CDW events and their associated dependence are considered compared to their independent and isolated counterparts. We find teleconnections between CDW and Niño3.4; at least 80% of the CDW events are causally linked to Niño3.4 at 50% of the grid locations across the hotspot regions. This study advances the understanding of multi-hazard hydrologic risks from CDW events and the presented results can aid more robust planning and decision-making.

     
    more » « less