skip to main content


Search for: All records

Award ID contains: 1832468

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Temporary traffic control (TTC) in highway work zones has significant implications and challenges in terms of safety for road users and workers. Work zone workers are increasingly concerned about the risks they face due to their proximity to live traffic on the road. Drivers tend to be less aware of the risks faced by workers in highway work zones. The public should develop empathy to increase awareness about the danger construction workers are exposed in highway work zones. The research objective was to use virtual reality (VR) with a role-playing situation with almost complete sensory immersion in a controlled environment and a driving simulator to investigate if exposing drivers to the work hazards that highway construction workers typically encounter influences their behaviour while driving through work zones. The study compared the driving behaviours in the simulator between subjects sensitized using VR to the subjects who were not sensitized using VR. The simulation included the use of a GPS device that instructed drivers to turn on a road that was blocked by the TTC of the work zone as a distraction strategy. The results indicate that participants exposed to VR made safer driving decisions than participants without the VR intervention. The results suggest that drivers' empathy towards highway construction workers in a work zone can positively impact safety, communication, and well-being. 
    more » « less
  2. Emergency housing has become a necessity in Puerto Rico due to the size and frequency of extreme natural events such as earthquakes and hurricanes that affect the island. The Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), funded by National Science Foundation (NSF) has developed an interdisciplinary curricular sequence to educate students to design infrastructure to withstand the impact of natural disasters. Three campuses of our university system collaborate in this interdisciplinary effort. Participating students, pursuing undergraduate degrees in engineering, architecture, and surveying, take courses together and participate in co-curricular activities (both online and in person through field visits). RISE-UP integrates servingness as a tool that contributes to the formation of students’ sensibility to social dynamics connected to the educational experiences. The final course of the curricular sequence was designed to integrate servingness by addressing aspects connected to the learning experience including leadership identity, critical consciousness, and civic engagement all in the context of Puerto Rico’s current infrastructural needs. During the final course, students apply the knowledge gained in the program to provide a solution to a design problem. The spring 2021 semester exercise was the design of a set of emergency houses based on a repeated unit. The houses' design requirements include environmental considerations, rainwater management, the use of natural ventilation, electric power autonomy during blackouts and structural stability of the units to face both seismic and wind loads. This paper discusses the semester project and presents the design solutions of the interdisciplinary groups of students who took part in the course. It also discusses the results of a survey whose goal was to explore the perception of the students about their achievements when taking part in the course and the dynamics seen in the course related to servingess and collaboration. 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  3. Visual qualitative methodologies enhance the richness of data and makes participants experts on the object of interest. Visual data brings another dimension to the evaluation process, besides surveys and interviews, as well as depth and breadth to participants reactions to specific program activities. Visual data consists of images, such as photos, drawings, artwork, among others. Exploring a different approach to assess impact of an educational activity, an exercise was designed where participants were asked to take photos to document a site visit to an area impacted by a swarm of earthquakes in 2019. The exercise required taking five photos of either objects, persons, scenery, structures, or any other thing that captured their attention during the visit and write a reflective essay to answer three questions: 1) How do these photos represent your site visit experience? 2) Based on the content of your photos, write about what you learned, discovered, new knowledge acquired, emotions, changes in your way of thinking, etc., and 3) What did you learned or discovered from doing this exercise? Twenty-two undergraduate engineering and architecture students from the RISE-UP Program, enrolled in a curricular sequence in design and construction of resilient and sustainable structures, completed the exercise. Analyses of obtained data includes frequency of captured images and content analysis of reflective essays to determine instances where each of the four proposed learning objectives was present. Results show that across essays, 32% of the essays include text that demonstrate impact related to the first objective, 59% for the second, 73% for the third, and 86% for the fourth objective. Forty-five percent of essays included text considered relevant but not related to an objective. Personal, social, and career insights were categorized as unintended results. Photos taken by students represent what they considered relevant during the visit and also evidence the achievement of the proposed learning objectives. In general, three mayor categories emerged from the content in photos: 1) photos related to the design and construction of the structure and specific damage observed from earthquakes; 2) photos of classmates, professors, and group activities; and 3) other photos that do not share a theme. Both photos and essays demonstrate that the learning objectives were successfully achieved and encourage the use of visual data as an alternative for the evaluation of educational activities. 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  4. The population of students in Puerto Rico that has enrolled in higher education within the last six years has been severely affected by a compound effect of the many major humanitarian crises, including a deteriorated economy since the 2006 Great Recession, Hurricanes Irma and Maria in 2017, earthquakes in 2019 and 2020, the ongoing COVID-19 pandemic since 2020, and Hurricane Fiona in 2022. To ensure that students can cope with the aftermath of these natural disasters, the following programs were conceived: The Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), the Resilient Infrastructure and Sustainability Education Undergraduate Program (RISE-UP) and The Noyce Teacher Scholars Program – (NoTeS), all three programs are funded by the National Science Foundation. EECOS developed a support ecosystem that consists of three elements: academic support, socio-emotional support, and financial support. NoTeS. provides talented Hispanic low-socioeconomic bilingual undergraduate or recently graduated STEM majors and professionals up to two years of scholarship funding as well as academic and professional support as they complete the requirements to obtain teacher certification to become K-12 math and science teachers. This program seeks to increase the number of K-12 teachers with strong STEM content knowledge to fill the need for teachers in high-need school districts. RISE-UP was conceptualized to educate architecture and engineering students to work in interdisciplinary teams to provide resilient and sustainable design and construction solutions to infrastructure challenges. To date, EECOS has directly impacted XX students and graduated XXX students. NoTeS has helped nineteen scholars and ten affiliates (participants of the activities without the scholarship) partake. Eight of the nine alums scholars now work as math or science teachers in a high-needs school. RISE-UP has had 127 scholars who are enrolled or have completed the RISE-UP curricular sequence. This paper provides effective practices and a baseline characterization that universities can use to help students overcome the effects of natural disasters and promote student success using ecosystems of support that expand capabilities and opportunities, particularly for STEM scholars. 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  5. Ingenuity for El Ingenio is a case study to address the challenges that marginalized communities in Puerto Rico suffer, mostly from natural hazards, due to settlements in high-risk areas and deteriorating infrastructure. The case study was developed by an interdisciplinary group of students from the University of Puerto Rico - Río Piedras School of Architecture and students from the Department of Civil Engineering and Surveying and the Department of Electrical Engineering at the University of Puerto Rico - Mayagüez, as part of the course “Design-Build Project Delivery” in the RISE-UP program. The project contemplated spaces for a family/group of four people, in the neighborhood Ingenio in Toa Baja, Puerto Rico, which is a community exposed to multiple natural hazards including hurricanes, earthquakes, and floods. The design parameters for the project included a set budget of $40,000 USD for the construction of four temporary housing units, requirement to withstand the impact of multiple natural hazards, as well as being simple to build and be able to operate independent to power and water grids during an emergency. The resulting design provides 270 sq ft. of usable space and can partially function off the grid due to solar energy generation and water storage. Local materials were implemented, and a manual of components and suggested construction methods was developed. This experience showcases the benefits that an interdisciplinary-integrated approach to infrastructure design can have on producing rapid and efficient design solutions to challenges caused by natural hazards, in resilient and sustainable ways. 
    more » « less
  6. Because of the already crowded civil engineering curriculum and the amount of previous knowledge required, earthquake engineering topics are barely taught at the undergraduate level and is mostly reserved as an advance course in graduate school. In this article we show how we engaged fiber-based simulations along with field damage observations from the 2020 southwest Puerto Rico earthquake sequence to introduce early year college students from different academic backgrounds into structural earthquake engineering. It was found that fiber-based modeling provides a natural way of modeling civil structures and offer results that can be easily related with the expected/observed damages, making it an efficient tool to introduce key aspects of the structural seismic response and motivate early year college students to pursue further studies in this field. 
    more » « less
  7. On January 7, 2020, the southwest of Puerto Rico was struck by a M6.4 earthquake that caused the collapse of several structures, including a 3-floor operational reinforced concrete school. While it is well known that the island is located on an active seismic zone, this event took by surprise and unprepared the affected communities, as the last significant earthquake dated 1918 and most attention in the island is directed towards recurrent tropical cyclones hazards. This event offers a unique opportunity to promulgate an earthquake awareness culture in the community and promote earthquake engineering within our students. This paper presents an undergraduate research case study where the students designed a vertical evacuation structure for a coastal community in Mayaguez, PR. The group was comprised of undergraduate students with different academic background: civil engineering, surveying and architecture. The objective was to foster interdisciplinary problem-solving skills and advance the knowledge of earthquake engineering principles in the students. The results from the project proved that when students from different background and perspectives work together, the solutions that arise are holistic and the knowledge acquired is deeper and better rounded. 
    more » « less
  8. In Puerto Rico, the exposure to extreme environmental conditions has become part of a new normal. Because of this, the education of professionals to face this new reality is part of the demands of the academia of the present, and to the core of it the concept of servingness as a tool contribute to the formation of students’ and faculty sensibility to social dynamics connected to the educational experiences. The Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), funded by the Hispanic Serving Institution (HSI) program of the National Science Foundation (NSF), has been conceptualized including elements of servingness by addressing aspects connected to the learning experience, leadership identity, critical consciousness, academic and research aspirations, and civic engagement all in the context of Puerto Rico’s current infrastructural needs. This paper addresses those dynamics by means of the voice of RISE-UP participants, accounting for how the experience generated by the crossroads that the program creates between the professional interdisciplinarity, the approach to infrastructure’s sustainability, and the concept of resiliency, have impacted the experience of servingness for students in the program. 
    more » « less
  9. Coastal Communities are exposed to multiple hazards including hurricanes, storm surges, waves, and riverine flash floods. This paper presents the outcome of a Basin-wide Flood Multi-hazard Risks module that was developed and offered as part of a collaboration between two research projects: the UPRM-DHS Coastal Resilience Center of Excellence (CRC) funded by the Department of Homeland Security and the Resilient Infrastructure and Sustainability Education Undergraduate Program (RISE-UP) funded by the National Science Foundation (NSF). The content was designed to give students an understanding of complex project management in coastal communities. The main learning objective was for students to be able to assess and recognize the actions that can be taken to improve resiliency in coastal communities. Students learned how to manage multi-hazard floods. Through knowledge gained by participating in lectures, discussions, and the development of case studies, students were able to assess flood risk and current mitigation strategies for coastal communities in Puerto Rico. The learning experience provided an overview of the history, needs, and challenges that coastal communities face regarding flood and coastal hazards. Through the case studies, students were able to appreciate and understand the risk exposure on the natural and built infrastructure, and the importance of always taking into consideration the social impact. 
    more » « less
  10. The academic preparation of scholars on infrastructure-related disciplines often takes place within isolated professional domains, rarely embracing an interdisciplinary approach for problem solving. The current work describes the implementation and outcomes from an undergraduate program designed to increase students’ awareness and knowledge of infrastructure vulnerabilities to students pursuing engineering and architecture degrees. The program, titled “Resilient Infrastructure and Sustainability Education -Undergraduate Program” utilizes the devastation from Hurricanes Irma and María for implementing an interdisciplinary case study methodology to understand and generate solutions to a variety of complex infrastructure challenges in a real-life setting. Project Based Learning (PBL) constitutes the theoretical model that frames this study. The sample included 23 undergraduate students, from architecture and engineering, and from three different campuses. All students completed a course sequence of 15 credits in design and construction of resilient and sustainable infrastructure. The results indicate that the program outcomes were achieved: development of interdisciplinary research skills and project design, hands-on solutions for real problems, awareness of human factors on project design, understanding of the importance and contribution of different disciplines and perspectives, and most important, developing the interest of putting into practice learned knowledge and skills in future projects. Students internalized the value of sustainability and resilience, in their coursework and future professionals, but also personally, applying these principles in their daily life. Students reported that their initial expectations about the program were either achieved or exceeded what they had foreseen. They considered a strength having three campuses and several disciplines working collaboratively. 
    more » « less