skip to main content

Search for: All records

Award ID contains: 1832468

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ingenuity for El Ingenio is a case study to address the challenges that marginalized communities in Puerto Rico suffer, mostly from natural hazards, due to settlements in high-risk areas and deteriorating infrastructure. The case study was developed by an interdisciplinary group of students from the University of Puerto Rico - Río Piedras School of Architecture and students from the Department of Civil Engineering and Surveying and the Department of Electrical Engineering at the University of Puerto Rico - Mayagüez, as part of the course “Design-Build Project Delivery” in the RISE-UP program. The project contemplated spaces for a family/group of four people, in the neighborhood Ingenio in Toa Baja, Puerto Rico, which is a community exposed to multiple natural hazards including hurricanes, earthquakes, and floods. The design parameters for the project included a set budget of $40,000 USD for the construction of four temporary housing units, requirement to withstand the impact of multiple natural hazards, as well as being simple to build and be able to operate independent to power and water grids during an emergency. The resulting design provides 270 sq ft. of usable space and can partially function off the grid due to solar energy generation and water storage.more »Local materials were implemented, and a manual of components and suggested construction methods was developed. This experience showcases the benefits that an interdisciplinary-integrated approach to infrastructure design can have on producing rapid and efficient design solutions to challenges caused by natural hazards, in resilient and sustainable ways.« less
    Free, publicly-accessible full text available July 18, 2023
  2. Because of the already crowded civil engineering curriculum and the amount of previous knowledge required, earthquake engineering topics are barely taught at the undergraduate level and is mostly reserved as an advance course in graduate school. In this article we show how we engaged fiber-based simulations along with field damage observations from the 2020 southwest Puerto Rico earthquake sequence to introduce early year college students from different academic backgrounds into structural earthquake engineering. It was found that fiber-based modeling provides a natural way of modeling civil structures and offer results that can be easily related with the expected/observed damages, making it an efficient tool to introduce key aspects of the structural seismic response and motivate early year college students to pursue further studies in this field.
    Free, publicly-accessible full text available June 27, 2023
  3. On January 7, 2020, the southwest of Puerto Rico was struck by a M6.4 earthquake that caused the collapse of several structures, including a 3-floor operational reinforced concrete school. While it is well known that the island is located on an active seismic zone, this event took by surprise and unprepared the affected communities, as the last significant earthquake dated 1918 and most attention in the island is directed towards recurrent tropical cyclones hazards. This event offers a unique opportunity to promulgate an earthquake awareness culture in the community and promote earthquake engineering within our students. This paper presents an undergraduate research case study where the students designed a vertical evacuation structure for a coastal community in Mayaguez, PR. The group was comprised of undergraduate students with different academic background: civil engineering, surveying and architecture. The objective was to foster interdisciplinary problem-solving skills and advance the knowledge of earthquake engineering principles in the students. The results from the project proved that when students from different background and perspectives work together, the solutions that arise are holistic and the knowledge acquired is deeper and better rounded.
    Free, publicly-accessible full text available June 27, 2023
  4. In Puerto Rico, the exposure to extreme environmental conditions has become part of a new normal. Because of this, the education of professionals to face this new reality is part of the demands of the academia of the present, and to the core of it the concept of servingness as a tool contribute to the formation of students’ and faculty sensibility to social dynamics connected to the educational experiences. The Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), funded by the Hispanic Serving Institution (HSI) program of the National Science Foundation (NSF), has been conceptualized including elements of servingness by addressing aspects connected to the learning experience, leadership identity, critical consciousness, academic and research aspirations, and civic engagement all in the context of Puerto Rico’s current infrastructural needs. This paper addresses those dynamics by means of the voice of RISE-UP participants, accounting for how the experience generated by the crossroads that the program creates between the professional interdisciplinarity, the approach to infrastructure’s sustainability, and the concept of resiliency, have impacted the experience of servingness for students in the program.
    Free, publicly-accessible full text available June 26, 2023
  5. Coastal Communities are exposed to multiple hazards including hurricanes, storm surges, waves, and riverine flash floods. This paper presents the outcome of a Basin-wide Flood Multi-hazard Risks module that was developed and offered as part of a collaboration between two research projects: the UPRM-DHS Coastal Resilience Center of Excellence (CRC) funded by the Department of Homeland Security and the Resilient Infrastructure and Sustainability Education Undergraduate Program (RISE-UP) funded by the National Science Foundation (NSF). The content was designed to give students an understanding of complex project management in coastal communities. The main learning objective was for students to be able to assess and recognize the actions that can be taken to improve resiliency in coastal communities. Students learned how to manage multi-hazard floods. Through knowledge gained by participating in lectures, discussions, and the development of case studies, students were able to assess flood risk and current mitigation strategies for coastal communities in Puerto Rico. The learning experience provided an overview of the history, needs, and challenges that coastal communities face regarding flood and coastal hazards. Through the case studies, students were able to appreciate and understand the risk exposure on the natural and built infrastructure, and the importance of alwaysmore »taking into consideration the social impact.« less
    Free, publicly-accessible full text available June 26, 2023
  6. Maintaining information that documents damages that natural disasters cause to infrastructure and documenting the efforts to rebuild it, is essential for future infrastructure mitigation and reconstruction actions. To address this, we have developed the Interdisciplinary Research Network Extension (IReNE) aimed to keep record and centralize data relevant to cases in Puerto Rico. IReNE has been conceptualized following the case study methodology and it has been designed to fit and scaffold the Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE- UP), following the four stages defined by the Depth of Knowledge (DOK) model and a Project Based Learning approach. This paper presents the development of IReNE and presents case study examples of its current use for supporting the RISE-UP teaching model. IReNE was designed as an open-source platform that will be timely available to researchers, academics, and practitioners. We also expect their conceptual and applied developments to be replicated in other academic contexts, and therefore contributing on documenting, systematizing, and disseminating the impact of natural events on infrastructure.
    Free, publicly-accessible full text available June 20, 2023
  7. The academic preparation of scholars on infrastructure-related disciplines often takes place within isolated professional domains, rarely embracing an interdisciplinary approach for problem solving. The current work describes the implementation and outcomes from an undergraduate program designed to increase students’ awareness and knowledge of infrastructure vulnerabilities to students pursuing engineering and architecture degrees. The program, titled “Resilient Infrastructure and Sustainability Education -Undergraduate Program” utilizes the devastation from Hurricanes Irma and María for implementing an interdisciplinary case study methodology to understand and generate solutions to a variety of complex infrastructure challenges in a real-life setting. Project Based Learning (PBL) constitutes the theoretical model that frames this study. The sample included 23 undergraduate students, from architecture and engineering, and from three different campuses. All students completed a course sequence of 15 credits in design and construction of resilient and sustainable infrastructure. The results indicate that the program outcomes were achieved: development of interdisciplinary research skills and project design, hands-on solutions for real problems, awareness of human factors on project design, understanding of the importance and contribution of different disciplines and perspectives, and most important, developing the interest of putting into practice learned knowledge and skills in future projects. Students internalized the value ofmore »sustainability and resilience, in their coursework and future professionals, but also personally, applying these principles in their daily life. Students reported that their initial expectations about the program were either achieved or exceeded what they had foreseen. They considered a strength having three campuses and several disciplines working collaboratively.« less
    Free, publicly-accessible full text available June 20, 2023
  8. To preserve the stories of resiliency and document the infrastructure damages caused by Hurricanes Irma and María and the 2020 earthquakes in Puerto Rico, the timely collection of evidence is essential. To address this need, case studies of damages caused by the natural disasters and a repository of information aimed to keep record and centralize information regarding relevant cases that provide examples of evidence of infrastructure damages and processes worth preserving is needed. To develop said case studies and a repository, a two-prong approach was used in this study. First, the case study methodology was followed. According to Yin, a case study is “an intense study of a single unit with the purpose of a larger class of (similar) units”. Case studies are used in academia for both research and teaching purposes. Our research team advocates for the use of case studies as tools to inform both learning and decision-making. Secondly, the repository model was developed. This paper presents the results of the development of the repository and includes sample case studies. The repository allows students, academics, researchers, and other stakeholders to understand the impact of extreme environmental conditions on the built environment. Faculty can use the repository in theirmore »courses to teach Architecture, Engineering and Construction students topics related to resiliency and sustainability in the build environment. Each case study developed and deposited in the repository, answers to research questions regarding what, how and when the damages happened, who were the stakeholders involved in the processes, what were their actions, and what are the lessons learned. The case studies have the potential of becoming responses to hypotheses for those mining the repository. The paper contributes to the body of knowledge by presenting the results of the development of case studies and a database that can be used for both research and teaching purposes. These can be replicated in the US and other countries, in need of recording and systematizing information after natural events.« less
  9. Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunitiesmore »for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges.« less
  10. Undergraduate research experiences and internships enhance student learning in undergraduate programs. Due to the worldwide COVID-19 pandemic, many summer research. experiences and internships were canceled or postponed to future summers. The Resilient Infrastructure and Sustainability Education Undergraduate Program (RISE-UP) at the University of Puerto Rico consists of a curriculum that is composed of four courses and an experiential learning experience (internship or undergraduate research). Due to the lack of alternatives for students to fulfill the experiential learning experience in summer 2020, RISE-UP developed a summer virtual undergraduate research experience which focused on developing basic research skills and to apply them to develop interdisciplinary solutions for real problems. We collaborated with students from several disciplines and two. campuses to analyze and address the seismic vulnerability of several structures. This experience allowed us to have a better understanding of seismic vulnerability, as well as finding interdisciplinary solutions to upgrade our infrastructure. It also provided us the opportunity to experience an internship without the risk of exposure to COVID-19. In this paper we share our experience and tools that aided us in our research to show that conducting virtual research is a viable and effective option for undergraduate students.