skip to main content


Title: Kepler-167e as a Probe of the Formation Histories of Cold Giants with Inner Super-Earths
Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models to constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars.  more » « less
Award ID(s):
1903811
NSF-PAR ID:
10358414
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μ Jy beam −1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few M Jup ), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N 2 snowlines. 
    more » « less
  2. Abstract

    Planets form in dusty, gas-rich disks around young stars, while at the same time, the planet formation process alters the physical and chemical structure of the disk itself. Embedded planets will locally heat the disk and sublimate volatile-rich ices, or in extreme cases, result in shocks that sputter heavy atoms such as Si from dust grains. This should cause chemical asymmetries detectable in molecular gas observations. Using high-angular-resolution ALMA archival data of the HD 169142 disk, we identify compact SOJ= 88− 77and SiSJ= 19 − 18 emission coincident with the position of a ∼ 2MJupplanet seen as a localized, Keplerian NIR feature within a gas-depleted, annular dust gap at ≈38 au. The SiS emission is located along an azimuthal arc and has a morphology similar to that of a known12CO kinematic excess. This is the first tentative detection of SiS emission in a protoplanetary disk and suggests that the planet is driving sufficiently strong shocks to produce gas-phase SiS. We also report the discovery of compact12CO and13COJ= 3 − 2 emission coincident with the planet location. Taken together, a planet-driven outflow provides the best explanation for the properties of the observed chemical asymmetries. We also resolve a bright, azimuthally asymmetric SO ring at ≈24 au. While most of this SO emission originates from ice sublimation, its asymmetric distribution implies azimuthal temperature variations driven by a misaligned inner disk or planet–disk interactions. Overall, the HD 169142 disk shows several distinct chemical signatures related to giant planet formation and presents a powerful template for future searches of planet-related chemical asymmetries in protoplanetary disks.

     
    more » « less
  3. Abstract Giant planets have been discovered at large separations from the central star. Moreover, a striking number of young circumstellar disks have gas and/or dust gaps at large orbital separations, potentially driven by embedded planetary objects. To form massive planets at large orbital separations through core accretion within the disk lifetime, however, an early solid body to seed pebble and gas accretion is desirable. Young protoplanetary disks are likely self-gravitating, and these gravitoturbulent disks may efficiently concentrate solid material at the midplane driven by spiral waves. We run 3D local hydrodynamical simulations of gravitoturbulent disks with Lagrangian dust particles to determine whether particle and gas self-gravity can lead to the formation of dense solid bodies, seeding later planet formation. When self-gravity between dust particles is included, solids of size St = 0.1–1 concentrate within the gravitoturbulent spiral features and collapse under their own self-gravity into dense clumps up to several M ⊕ in mass at wide orbits. Simulations with dust that drift most efficiently, St = 1, form the most massive clouds of particles, while simulations with smaller dust particles, St = 0.1, have clumps with masses an order of magnitude lower. When the effect of dust backreaction onto the gas is included, dust clumps become smaller by a factor of a few but more numerous. The existence of large solid bodies at an early stage of the disk can accelerate the planet formation process, particularly at wide orbital separations, and potentially explain planets distant from the central stars and young protoplanetary disks with substructures. 
    more » « less
  4. Abstract

    Kepler-289 is a three-planet system containing two sub-Neptunes and one cool giant planet orbiting a young, Sun-like star. All three planets exhibit transit timing variations (TTVs), with both adjacent planet pairs having orbital periods close to the 2:1 orbital resonance. We observe two transits of Kepler-289c with the Wide-field InfraRed Camera on the 200″ Hale Telescope at Palomar Observatory, using diffuser-assisted photometry to achieve space-like photometric precision from the ground. These new transit observations extend the original four-year Kepler TTV baseline by an additional 7.5 yr. We rereduce the archival Kepler data with an improved stellar activity correction and carry out a joint fit with the Palomar data to constrain the transit shapes and derive updated transit times. We then model the TTVs to determine the masses of the three planets and constrain their densities and bulk compositions. Our new analysis improves on previous mass and density constraints by a factor of two or more for all three planets, with the innermost planet showing the largest improvement. Our updated atmospheric mass fractions for the inner two planets indicate that they have hydrogen-rich envelopes, consistent with their location on the upper side of the radius valley. We also constrain the heavy element composition of the outer Saturn-mass planet, Kepler-289c, for the first time, finding that it contains 30.5 ± 6.9Mof metals. We use dust evolution models to show that Kepler-289c must have formed beyond 1 au, and likely beyond 3 au, and then migrated inward.

     
    more » « less
  5. Abstract

    The early K-type T-Tauri star, V1298 Tau (V= 10 mag, age ≈ 20–30 Myr) hosts four transiting planets with radii ranging from 4.9 to 9.6R. The three inner planets have orbital periods of ≈8–24 days while the outer planet’s period is poorly constrained by single transits observed with K2 and the Transiting Exoplanet Survey Satellite (TESS). Planets b, c, and d are proto–sub-Neptunes that may be undergoing significant mass loss. Depending on the stellar activity and planet masses, they are expected to evolve into super-Earths/sub-Neptunes that bound the radius valley. Here we present results of a joint transit and radial velocity (RV) modeling analysis, which includes recently obtained TESS photometry and MAROON-X RV measurements. Assuming circular orbits, we obtain a low-significance (≈2σ) RV detection of planet c, implying a mass of19.88.9+9.3Mand a conservative 2σupper limit of <39M. For planets b and d, we derive 2σupper limits ofMb< 159MandMd< 41M, respectively. For planet e, plausible discrete periods ofPe> 55.4 days are ruled out at the 3σlevel while seven solutions with 43.3 <Pe/d< 55.4 are consistent with the most probable 46.768131 ± 000076 days solution within 3σ. Adopting the most probable solution yields a 2.6σRV detection with a mass of 0.66 ± 0.26MJup. Comparing the updated mass and radius constraints with planetary evolution and interior structure models shows that planets b, d, and e are consistent with predictions for young gas-rich planets and that planet c is consistent with having a water-rich core with a substantial (∼5% by mass) H2envelope.

     
    more » « less