Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models to constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars. 
                        more » 
                        « less   
                    This content will become publicly available on November 21, 2025
                            
                            A giant planet transiting a 3-Myr protostar with a misaligned disk
                        
                    
    
            Astronomers have found more than a dozen planets transiting stars that are 10–40 million years old1, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken2; provided the inner disk is depleted, transiting planets may thus be visible. Here we report observations of the transiting planet IRAS 04125+2902 b orbiting a 3-million-year-old, 0.7-solar-mass, pre-main-sequence star in the Taurus Molecular Cloud. The host star harbours a nearly face-on (30 degrees inclination) transitional disk3 and a wide binary companion. The planet has a period of 8.83 days, a radius of 10.7 Earth radii (0.96 Jupiter radii) and a 95%-confidence upper limit on its mass of 90 Earth masses (0.3 Jupiter masses) from radial-velocity measurements, making it a possible precursor of the super-Earths and sub-Neptunes frequently found around main-sequence stars. The rotational broadening of the star and the orbit of the wide (4 arcseconds, 635 astronomical units) companion are both consistent with edge-on orientations. Thus, all components of the system are consistent with alignment except the outer disk; the origin of this misalignment is unclear. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2143763
- PAR ID:
- 10577514
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature / ArXiV
- Date Published:
- Journal Name:
- Nature
- Volume:
- 635
- Issue:
- 8039
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 574 to 577
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present the discovery of TOI-5205b, a transiting Jovian planet orbiting a solar metallicity M4V star, which was discovered using Transiting Exoplanet Survey Satellite photometry and then confirmed using a combination of precise radial velocities, ground-based photometry, spectra, and speckle imaging. TOI-5205b has one of the highest mass ratios for M-dwarf planets, with a mass ratio of almost 0.3%, as it orbits a host star that is just 0.392 ± 0.015M⊙. Its planetary radius is 1.03 ± 0.03RJ, while the mass is 1.08 ± 0.06MJ. Additionally, the large size of the planet orbiting a small star results in a transit depth of ∼7%, making it one of the deepest transits of a confirmed exoplanet orbiting a main-sequence star. The large transit depth makes TOI-5205b a compelling target to probe its atmospheric properties, as a means of tracing the potential formation pathways. While there have been radial-velocity-only discoveries of giant planets around mid-M dwarfs, this is the first transiting Jupiter with a mass measurement discovered around such a low-mass host star. The high mass of TOI-5205b stretches conventional theories of planet formation and disk scaling relations that cannot easily recreate the conditions required to form such planets.more » « less
- 
            Abstract We present the Transiting Exoplanet Survey Satellite (TESS) discovery of the LHS 1678 (TOI-696) exoplanet system, comprised of two approximately Earth-sized transiting planets and a likely astrometric brown dwarf orbiting a bright ( V J = 12.5, K s = 8.3) M2 dwarf at 19.9 pc. The two TESS-detected planets are of radius 0.70 ± 0.04 R ⊕ and 0.98 ± 0.06 R ⊕ in 0.86 day and 3.69 day orbits, respectively. Both planets are validated and characterized via ground-based follow-up observations. High Accuracy Radial Velocity Planet Searcher RV monitoring yields 97.7 percentile mass upper limits of 0.35 M ⊕ and 1.4 M ⊕ for planets b and c, respectively. The astrometric companion detected by the Cerro Tololo Inter-American Observatory/Small and Moderate Aperture Telescope System 0.9 m has an orbital period on the order of decades and is undetected by other means. Additional ground-based observations constrain the companion to being a high-mass brown dwarf or smaller. Each planet is of unique interest; the inner planet has an ultra-short period, and the outer planet is in the Venus zone. Both are promising targets for atmospheric characterization with the James Webb Space Telescope and mass measurements via extreme-precision radial velocity. A third planet candidate of radius 0.9 ± 0.1 R ⊕ in a 4.97 day orbit is also identified in multicycle TESS data for validation in future work. The host star is associated with an observed gap in the lower main sequence of the Hertzsprung–Russell diagram. This gap is tied to the transition from partially to fully convective interiors in M dwarfs, and the effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. The culmination of these system properties makes LHS 1678 a unique, compelling playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars.more » « less
- 
            Abstract Kepler-51 is a ≲1 Gyr old Sun-like star hosting three transiting planets with radii ≈6–9R⊕and orbital periods ≈45–130 days. Transit timing variations (TTVs) measured with past Kepler and Hubble Space Telescope (HST) observations have been successfully modeled by considering gravitational interactions between the three transiting planets, yielding low masses and low mean densities (≲0.1 g cm−3) for all three planets. However, the transit time of the outermost transiting planet Kepler-51d recently measured by the James Webb Space Telescope 10 yr after the Kepler observations is significantly discrepant from the prediction made by the three-planet TTV model, which we confirmed with ground-based and follow-up HST observations. We show that the departure from the three-planet model is explained by including a fourth outer planet, Kepler-51e, in the TTV model. A wide range of masses (≲MJup) and orbital periods (≲10 yr) are possible for Kepler-51e. Nevertheless, all the coplanar solutions found from our brute-force search imply masses ≲10M⊕for the inner transiting planets. Thus, their densities remain low, though with larger uncertainties than previously estimated. Unlike other possible solutions, the one in which Kepler-51e is around the 2:1 mean motion resonance with Kepler-51d implies low orbital eccentricities (≲0.05) and comparable masses (∼5M⊕) for all four planets, as is seen in other compact multiplanet systems. This work demonstrates the importance of long-term follow-up of TTV systems for probing longer-period planets in a system.more » « less
- 
            ABSTRACT High-precision light curves from space-based telescopes and precise astrometry from the Gaia satellite have revolutionized our ability to characterize exoplanet host stars. Asteroseismology has allowed for stellar parameters to be determined to remarkable precision, achieving age uncertainties as low as 10−20 per cent for Sun-like stars. We present an asteroseismic analysis of the naked-eye ($V = 5.78$), G4V star $$\nu ^2$$ Lupi (HD 136352), which hosts three small transiting planets with orbital periods of 11, 27, and 107 d. We used the latest 20-s cadence photometry data from the Transiting Exoplanet Survey Satellite (TESS) to extract stellar oscillations. Comparing these to stellar models, we find that the star has a mass of $$0.83^{+0.04}_{-0.03}$$ (ran) $$\pm 0.07$$ (sys) $$M_\odot$$, a radius of $$1.00^{+0.01}_{-0.02}$$ (ran) $$\pm 0.04$$ (sys) $$R_\odot$$, and an age of $$11.9^{+2.6}_{-1.6}$$ (ran) $$\pm 1.7$$ (sys) Gyr. We also confirm that the star is likely a member of the Galactic thick disc based on its Galactic velocities, consistent with the asteroseismic age. Based on the newly determined stellar parameters, we recalculate the planet parameters. The inner planet has a mass of $$4.55 \pm 0.40$$ $$M_{\oplus }$$ and a radius of $$1.57 \pm 0.04$$ $$R_{\oplus }$$, suggesting the planet is rocky and consisting primarily of silicates without an iron-rich core, consistent with its old age and significant alpha-element enhancement. The two outer planets have masses and radii of $$10.87 \pm 0.62$$ $$M_{\oplus }$$ and $$2.75 \pm 0.06$$ $$R_{\oplus }$$, and $$8.52 \pm 0.90$$ $$M_{\oplus }$$ and $$2.42 \pm 0.08$$ $$R_{\oplus }$$, respectively, suggesting both are sub-Neptune planets with a significant H–He atmosphere.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
