skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: The TESS-Keck Survey. VIII. Confirmation of a Transiting Giant Planet on an Eccentric 261 Day Orbit with the Automated Planet Finder Telescope*
Abstract We report the discovery of TOI-2180 b, a 2.8 M J giant planet orbiting a slightly evolved G5 host star. This planet transited only once in Cycle 2 of the primary Transiting Exoplanet Survey Satellite (TESS) mission. Citizen scientists identified the 24 hr single-transit event shortly after the data were released, allowing a Doppler monitoring campaign with the Automated Planet Finder telescope at Lick Observatory to begin promptly. The radial velocity observations refined the orbital period of TOI-2180 b to be 260.8 ± 0.6 days, revealed an orbital eccentricity of 0.368 ± 0.007, and discovered long-term acceleration from a more distant massive companion. We conducted ground-based photometry from 14 sites spread around the globe in an attempt to detect another transit. Although we did not make a clear transit detection, the nondetections improved the precision of the orbital period. We predict that TESS will likely detect another transit of TOI-2180 b in Sector 48 of its extended mission. We use giant planet structure models to retrieve the bulk heavy-element content of TOI-2180 b. When considered alongside other giant planets with orbital periods over 100 days, we find tentative evidence that the correlation between planet mass and metal enrichment relative to stellar is dependent on orbital properties. Single-transit discoveries like TOI-2180 b highlight the exciting potential of the TESS mission to find planets with long orbital periods and low irradiation fluxes despite the selection biases associated with the transit method.  more » « less
Award ID(s):
1903811 1717000
PAR ID:
10358418
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
163
Issue:
2
ISSN:
0004-6256
Page Range / eLocation ID:
61
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Discovering transiting exoplanets with relatively long orbital periods (>10 d) is crucial to facilitate the study of cool exoplanet atmospheres (Teq < 700 K) and to understand exoplanet formation and inward migration further out than typical transiting exoplanets. In order to discover these longer period transiting exoplanets, long-term photometric, and radial velocity campaigns are required. We report the discovery of TOI-2447 b (=NGTS-29 b), a Saturn-mass transiting exoplanet orbiting a bright (T = 10.0) Solar-type star (Teff = 5730 K). TOI-2447 b was identified as a transiting exoplanet candidate from a single transit event of 1.3 per cent depth and 7.29 h duration in TESS Sector 31 and a prior transit event from 2017 in NGTS data. Four further transit events were observed with NGTS photometry which revealed an orbital period of P = 69.34 d. The transit events establish a radius for TOI-2447 b of $0.865 \pm 0.010\, \rm R_{\rm J}$, while radial velocity measurements give a mass of $0.386 \pm 0.025\, \rm M_{\rm J}$. The equilibrium temperature of the planet is 414 K, making it much cooler than the majority of TESS planet discoveries. We also detect a transit signal in NGTS data not caused by TOI-2447 b, along with transit timing variations and evidence for a ∼150 d signal in radial velocity measurements. It is likely that the system hosts additional planets, but further photometry and radial velocity campaigns will be needed to determine their parameters with confidence. TOI-2447 b/NGTS-29 b joins a small but growing population of cool giants that will provide crucial insights into giant planet composition and formation mechanisms.

     
    more » « less
  2. ABSTRACT

    We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288 b has a period of $2.699835^{+0.000004}_{-0.000003}$ d, a radius of 5.24 ± 0.09 R⊕, and a mass of 42 ± 3 M⊕, making this planet a hot transiting super-Neptune situated right in the Neptunian desert. This desert refers to a paucity of Neptune-sized planets on short period orbits. Our 2.4-yr-long Doppler monitoring of TOI-1288 revealed the presence of a Saturn–mass planet on a moderately eccentric orbit ($0.13^{+0.07}_{-0.09}$) with a minimum mass of 84 ± 7 M⊕ and a period of $443^{+11}_{-13}$ d. The five sectors worth of TESS data do not cover our expected mid-transit time for TOI-1288 c, and we do not detect a transit for this planet in these sectors.

     
    more » « less
  3. Abstract

    M-dwarf stars provide us with an ideal opportunity to study nearby small planets. The HUnting for M Dwarf Rocky planets Using MAROON-X (HUMDRUM) survey uses the MAROON-X spectrograph, which is ideally suited to studying these stars, to measure precise masses of a volume-limited (<30 pc) sample of transiting M-dwarf planets. TOI-1450 is a nearby (22.5 pc) binary system containing a M3 dwarf with a roughly 3000 K companion. Its primary star, TOI-1450A, was identified by the Transiting Exoplanet Survey Satellite (TESS) to have a 2.04 days transit signal, and is included in the HUMDRUM sample. In this paper, we present MAROON-X radial velocities (RVs) which confirm the planetary nature of this signal and measure its mass at nearly 10% precision. The 2.04 days planet, TOI-1450A b, hasRb= 1.13 ± 0.04RandMb= 1.26 ± 0.13M. It is the second-lowest-mass transiting planet with a high-precision RV mass measurement. With this mass and radius, the planet’s mean density is compatible with an Earth-like composition. Given its short orbital period and slightly sub-Earth density, it may be amenable to JWST follow-up to test whether the planet has retained an atmosphere despite extreme heating from the nearby star. We also discover a nontransiting planet in the system with a period of 5.07 days and aMsinic=1.53±0.18M. We also find a 2.01 days signal present in the systems’s TESS photometry that likely corresponds to the rotation period of TOI-1450A’s binary companion, TOI-1450B. TOI-1450A, meanwhile, appears to have a rotation period of approximately 40 days, which is in line with our expectations for a mid-M dwarf.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We report on the discovery and validation of a two-planet system around a bright (V  = 8.85 mag) early G dwarf (1.43  R⊙, 1.15  M⊙, TOI 2319) using data from NASA’s Transiting Exoplanet Survey Satellite (TESS). Three transit events from two planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of $11.6264 _{ - 0.0025 } ^ { + 0.0022 }$ d and radius of $3.41 _{ - 0.12 } ^ { + 0.14 }$ R⊕ for the inner planet, and a period in the range 19.26–35 d and a radius of $5.83 _{ - 0.14 } ^ { + 0.14 }$ R⊕ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $11.56 _{ - 6.14 } ^ { + 6.58 }$ M⊕, and allow us to place an upper limit of 27.5 M⊕ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterization and comparative planetology. 
    more » « less
  5. Abstract

    The youngest (<50 Myr) planets are vital to understand planet formation and early evolution. The 17 Myr system HIP 67522 is already known to host a giant (≃10R) planet on a tight orbit. In their discovery paper, Rizzuto et al. reported a tentative single-transit detection of an additional planet in the system using TESS. Here, we report the discovery of HIP 67522c, a 7.9Rplanet that matches with that single-transit event. We confirm the signal with ground-based multiwavelength photometry from Sinistro and MuSCAT4. At a period of 14.33 days, planet c is close to a 2:1 mean-motion resonance with b (6.96 days or 2.06:1). The light curve shows distortions during many of the transits, which are consistent with spot-crossing events and/or flares. Fewer stellar activity events are seen in the transits of planet b, suggesting that planet c is crossing a more active latitude. Such distortions, combined with systematics in the TESS light-curve extraction, likely explain why planet c was previously missed.

     
    more » « less