skip to main content

Title: Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions
We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 10 40  erg s −1 and their total radiated energies are on the order of (0.3–3) × 10 47 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56 Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56 Ni masses on the order of 10 −4 to 10 −3   M ⊙ . The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission more » with a typical velocity of a few hundred km s −1 , along with Ca II features. In particular, the [Ca  II ] λ 7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Astronomy & Astrophysics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present Hubble Space Telescope (HST) imaging of the site of SN 2015bh in the nearby spiral galaxy NGC 2770 taken between 2017 and 2019, nearly four years after the peak of the explosion. In 2017–2018, the transient fades steadily in optical filters before declining more slowly toF814W= −7.1 mag in 2019, ≈4 mag below the level of its eruptive luminous blue variable (LBV) progenitor observed with HST in 2008–2009. The source fades at a constant color ofF555WF814W= 0.4 mag until 2018, similar to SN 2009ip and consistent with a spectrum dominated by interaction of the ejecta with circumstellar material (CSM). A deep optical spectrum obtained in 2021 lacks signatures of ongoing interaction (LHα≲ 1038erg s−1for broadened emission ≲2000 km s−1), but indicates the presence of a nearby Hiiregion (≲300 pc). The color evolution of the fading source makes it unlikely that emission from a scattered-light echo or binary OB companion of the progenitor contributes significantly to the flattening of the late-time light curve. The remaining emission in 2019 may plausibly be attributed an evolved/inflated companion or an unresolved (≲3 pc), young stellar cluster. Importantly, the color evolution of SN 2015bh rules out scenarios in which the surviving progenitormore »is obscured by nascent dust and does not clearly indicate a transition to a hotter, optically faint state. The simplest explanation is that the massive progenitor did not survive. SN 2015bh likely represents a remarkable example of the terminal explosion of a massive star preceded by decades of end-stage eruptive variability.

    « less

    The ultraviolet (UV) and near-infrared (NIR) photometric and optical spectroscopic observations of SN 2020acat covering ∼250 d after explosion are presented here. Using the fast rising photometric observations, spanning from the UV to NIR wavelengths, a pseudo-bolometric light curve was constructed and compared to several other well-observed Type IIb supernovae (SNe IIb). SN 2020acat displayed a very short rise time reaching a peak luminosity of $\mathrm{{\rm Log}_{10}}(L) = 42.49 \pm 0.17 \, \mathrm{erg \, s^{-1}}$ in only ∼14.6 ± 0.3 d. From modelling of the pseudo-bolometric light curve, we estimated a total mass of 56Ni synthesized by SN 2020acat of MNi = 0.13 ± 0.03 M⊙, with an ejecta mass of Mej = 2.3 ± 0.4 M⊙ and a kinetic energy of Ek = 1.2 ± 0.3 × 1051 erg. The optical spectra of SN 2020acat display hydrogen signatures well into the transitional period (≳ 100 d), between the photospheric and the nebular phases. The spectra also display a strong feature around 4900  Å that cannot be solely accounted for by the presence of the Fe ii 5018 line. We suggest that the Fe ii feature was augmented by He i 5016 and possibly by the presence of N ii 5005. From both photometric and spectroscopic analysis, we inferred that the progenitor of SN 2020acat was an intermediate-mass compact star with an MZAMS of 15–20 M⊙.

  3. Abstract We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission ( L x = 5 × 10 41 erg s −1 ) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 10 14 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10 −3 M ⊙ and density n = (1−4) × 10 10 cm −3 . Radio nondetections indicate a low-density environment at larger radii ( r > 10 16 cm) and mass-loss rate of M ̇ < 10 − 4 M ⊙ yr −1 . SCE modeling of both primary light-curvemore »peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M ⊙ and radius R e = 30−230 R ⊙ . The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers.« less
  4. Abstract

    We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M) and56Ni masses (≲0.04M) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-strippedmore »star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.

    « less
  5. Abstract We present a population of 19 radio-luminous supernovae (SNe) with emission reaching L ν ∼ 10 26 –10 29 erg s −1 Hz −1 in the first epoch of the Very Large Array Sky Survey (VLASS) at 2–4 GHz. Our sample includes one long gamma-ray burst, SN 2017iuk/GRB 171205A, and 18 core-collapse SNe detected at ≈1–60 yr after explosion. No thermonuclear explosion shows evidence for bright radio emission, and hydrogen-poor progenitors dominate the subsample of core-collapse events with spectroscopic classification at the time of explosion (79%). We interpret these findings in the context of the expected radio emission from the forward shock interaction with the circumstellar medium (CSM). We conclude that these observations require a departure from the single wind–like density profile (i.e., ρ CSM ∝ r −2 ) that is expected around massive stars and/or from a spherical Newtonian shock. Viable alternatives include the shock interaction with a detached, dense shell of CSM formed by a large effective progenitor mass-loss rate, M ̇ ∼ 10 − 4 – 10 − 1 M ⊙ yr −1 (for an assumed wind velocity of 1000 km s −1 ); emission from an off-axis relativistic jet entering our line of sight; ormore »the emergence of emission from a newly born pulsar-wind nebula. The relativistic SN 2012ap that is detected 5.7 and 8.5 yr after explosion with L ν ∼ 10 28 erg s −1 Hz −1 might constitute the first detections of an off-axis jet+cocoon system in a massive star. However, none of the VLASS SNe with archival data points are consistent with our model off-axis jet light curves. Future multiwavelength observations will distinguish among these scenarios. Our VLASS source catalogs, which were used to perform the VLASS cross-matching, are publicly available at .« less