We present optical and near-infrared observations of two Type Ibn supernovae (SNe), SN 2018jmt and SN 2019cj. Their light curves have rise times of about ten days, reaching an absolute peak magnitude ofMg(SN 2018jmt) = −19.07 ± 0.37 andMV(SN 2019cj) = −18.94 ± 0.19 mag, respectively. The early-time spectra of SN 2018jmt are dominated by a blue continuum, accompanied by narrow (600−1000 km s−1) He Ilines with the P-Cygni profile. At later epochs, the spectra become more similar to those of the prototypical SN Ibn 2006jc. At early phases, the spectra of SN 2019cj show flash ionisation emission lines of C III, N III, and He IIsuperposed on a blue continuum. These features disappear after a few days, and then the spectra of SN 2019cj evolve similarly to those of SN 2018jmt. The spectra indicate that the two SNe exploded within a He-rich circumstellar medium (CSM) lost by the progenitors a short time before the explosion. We modelled the light curves of the two SNe Ibn to constrain the progenitor and the explosion parameters. The ejecta masses are consistent with either what is expected for a canonical SN Ib (∼2 M⊙) or for a massive Wolf Rayet star (> ∼4 M⊙), with the kinetic energy on the order of 1051erg. The lower limit on the ejecta mass (> ∼2 M⊙) argues against a scenario involving a relatively low-mass progenitor (e.g.MZAMS ∼ 10 M⊙). We set a conservative upper limit of ∼0.1 M⊙for the56Ni masses in both SNe. From the light curve modelling, we determined a two-zone CSM distribution, with an inner, flat CSM component and an outer CSM with a steeper density profile. The physical properties of SN 2018jmt and SN 2019cj are consistent with those expected from the core collapse of relatively massive envelope-stripped stars.
more »
« less
This content will become publicly available on August 1, 2026
Massive stars exploding in a He-rich circumstellar medium: XI. Diverse evolution of five Ibn SNe 2020nxt, 2020taz, 2021bbv, 2023utc, and 2024aej
We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally lowr-band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×1042erg s−1, with total radiated energies on the order of (1 − 10)×1048erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He Iemission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He Ilines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s−1. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass (Mej) in the range 1 − 3 M⊙with kinetic energies (EKin) of (0.1 − 1)×1050erg. The inferred CSM mass ranges from 0.2 to 1 M⊙. These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors.
more »
« less
- PAR ID:
- 10653289
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- A&A
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 700
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present an optical photometric and spectroscopic analysis of the fast-declining hydrogen-rich Type II supernova (SN) 2019nyk. The light curve properties of SN 2019nyk align well with those of other fast-declining Type II SNe, such as SNe 2013by and 2014G. SN 2019nyk exhibits a peak absolute magnitude of −18.09 ± 0.17 mag in theVband, followed by a rapid decline at 2.84 ± 0.03 mag (100 d)−1during the recombination phase. The early spectra of SN 2019nyk exhibit high-ionisation emission features as well as narrow H Balmer lines, persisting until 4.1 d since explosion, indicating the presence of circumstellar material (CSM) in close proximity. A comparison of these features with other Type II SNe displaying an early interaction reveals similarities between these features and those observed in SNe 2014G and 2023ixf. We also compared the early spectra to literature models, estimating a mass-loss rate of the order of 10−3M⊙yr−1. Radiation hydrodynamical modelling of the light curve also suggests the mass loss from the progenitor within a short period prior to explosion, totalling 0.16M⊙of material within 2900R⊙of the progenitor. Furthermore, light curve modelling infers a zero-age main sequence mass of 15M⊙for the progenitor, a progenitor radius of 1031R⊙, and an explosion energy of 1.1 × 1051erg.more » « less
-
We present a comprehensive photometric and spectroscopic study of the Type IIP supernova (SN) 2018is. TheVband luminosity and the expansion velocity at 50 days post-explosion are −15.1 ± 0.2 mag (corrected for AV= 1.34 mag) and 1400 km s−1, classifying it as a low-luminosity SN II. The recombination phase in theVband is shorter, lasting around 110 days, and exhibits a steeper decline (1.0 mag per 100 days) compared to most other low-luminosity SNe II. Additionally, the optical and near-infrared spectra display hydrogen emission lines that are strikingly narrow, even for this class. The Fe IIand Sc IIline velocities are at the lower end of the typical range for low-luminosity SNe II. Semi-analytical modelling of the bolometric light curve suggests an ejecta mass of ∼8 M⊙, corresponding to a pre-supernova mass of ∼9.5 M⊙, and an explosion energy of ∼0.40 × 1051erg. Hydrodynamical modelling further indicates that the progenitor had a zero-age main sequence mass of 9 M⊙, coupled with a low explosion energy of 0.19 × 1051erg. The nebular spectrum reveals weak [O I]λλ6300,6364 lines, consistent with a moderate-mass progenitor, while features typical of Fe core-collapse events, such as He I, [C I], and Fe I, are indiscernible. However, the redder colours and low ratio of Ni to Fe abundance do not support an electron-capture scenario either. As a low-luminosity SN II with an atypically steep decline during the photospheric phase and remarkably narrow emission lines, SN 2018is contributes to the diversity observed within this population.more » « less
-
Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate of yr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion.more » « less
-
Abstract We present optical photometry and spectroscopy of the Type IIn supernova (SN) 2021qqp. Its unusual light curve is marked by a long precursor for ≈300 days, a rapid increase in brightness for ≈60 days, and then a sharp increase of ≈1.6 mag in only a few days to a first peak ofMr≈ −19.5 mag. The light curve then declines rapidly until it rebrightens to a second distinct peak ofMr≈ −17.3 mag centered at ≈335 days after the first peak. The spectra are dominated by Balmer lines with a complex morphology, including a narrow component with a width of ≈1300 km s−1(first peak) and ≈2500 km s−1(second peak) that we associate with the circumstellar medium (CSM) and a P Cygni component with an absorption velocity of ≈8500 km s−1(first peak) and ≈5600 km s−1(second peak) that we associate with the SN–CSM interaction shell. Using the luminosity and velocity evolution, we construct a flexible analytical model, finding two significant mass-loss episodes with peak mass loss rates of ≈10 and ≈5M⊙yr−1about 0.8 and 2 yr before explosion, respectively, with a total CSM mass of ≈2–4M⊙. We show that the most recent mass-loss episode could explain the precursor for the year preceding the explosion. The SN ejecta mass is constrained to be ≈5–30M⊙for an explosion energy of ≈(3–10) × 1051erg. We discuss eruptive massive stars (luminous blue variable, pulsational pair instability) and an extreme stellar merger with a compact object as possible progenitor channels.more » « less
An official website of the United States government
