skip to main content


Title: The radioactive nuclei and in the Cosmos and in the solar system
Abstract The cosmic evolution of the chemical elements from the Big Bang to the present time is driven by nuclear fusion reactions inside stars and stellar explosions. A cycle of matter recurrently re-processes metal-enriched stellar ejecta into the next generation of stars. The study of cosmic nucleosynthesis and this matter cycle requires the understanding of the physics of nuclear reactions, of the conditions at which the nuclear reactions are activated inside the stars and stellar explosions, of the stellar ejection mechanisms through winds and explosions, and of the transport of the ejecta towards the next cycle, from hot plasma to cold, star-forming gas. Due to the long timescales of stellar evolution, and because of the infrequent occurrence of stellar explosions, observational studies are challenging, as they have biases in time and space as well as different sensitivities related to the various astronomical methods. Here, we describe in detail the astrophysical and nuclear-physical processes involved in creating two radioactive isotopes useful in such studies, $^{26}\mathrm{Al}$ and $^{60}\mathrm{Fe}$ . Due to their radioactive lifetime of the order of a million years, these isotopes are suitable to characterise simultaneously the processes of nuclear fusion reactions and of interstellar transport. We describe and discuss the nuclear reactions involved in the production and destruction of $^{26}\mathrm{Al}$ and $^{60}\mathrm{Fe}$ , the key characteristics of the stellar sites of their nucleosynthesis and their interstellar journey after ejection from the nucleosynthesis sites. This allows us to connect the theoretical astrophysical aspects to the variety of astronomical messengers presented here, from stardust and cosmic-ray composition measurements, through observation of $\gamma$ rays produced by radioactivity, to material deposited in deep-sea ocean crusts and to the inferred composition of the first solids that have formed in the Solar System. We show that considering measurements of the isotopic ratio of $^{26}\mathrm{Al}$ to $^{60}\mathrm{Fe}$ eliminate some of the unknowns when interpreting astronomical results, and discuss the lessons learned from these two isotopes on cosmic chemical evolution. This review paper has emerged from an ISSI-BJ Team project in 2017–2019, bringing together nuclear physicists, astronomers, and astrophysicists in this inter-disciplinary discussion.  more » « less
Award ID(s):
1927130
NSF-PAR ID:
10358500
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Publications of the Astronomical Society of Australia
Volume:
38
ISSN:
1323-3580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The radioisotope 26 Al is a key observable for nucleosynthesis in the Galaxy and the environment of the early Solar System. To properly interpret the large variety of astronomical and meteoritic data, it is crucial to understand both the nuclear reactions involved in the production of 26 Al in the relevant stellar sites and the physics of such sites. These range from the winds of low- and intermediate-mass asymptotic giant branch stars; to massive and very massive stars, both their Wolf–Rayet winds and their final core-collapse supernovae (CCSN); and the ejecta from novae, the explosions that occur on the surface of a white dwarf accreting material from a stellar companion. Several reactions affect the production of 26 Al in these astrophysical objects, including (but not limited to) 25 Mg( p , γ ) 26 Al, 26 Al( p , γ ) 27 Si, and 26 Al( n , p / α ). Extensive experimental effort has been spent during recent years to improve our understanding of such key reactions. Here we present a summary of the astrophysical motivation for the study of 26 Al, a review of its production in the different stellar sites, and a timely evaluation of the currently available nuclear data. We also provide recommendations for the nuclear input into stellar models and suggest relevant, future experimental work. 
    more » « less
  2. Abstract Radioactive nuclei were present in the early solar system (ESS), as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper of this series (Brinkman et al. 2019), we focused on the production of 26 Al in massive binaries. Here, we focus on the production of another two short-lived radioactive nuclei, 36 Cl and 41 Ca, and the comparison to the ESS data. We used the MESA stellar evolution code with an extended nuclear network and computed massive (10–80 M ⊙ ), rotating (with initial velocities of 150 and 300 km s −1 ) and nonrotating single stars at solar metallicity ( Z = 0.014) up to the onset of core collapse. We present the wind yields for the radioactive isotopes 26 Al, 36 Cl, and 41 Ca, and the stable isotopes 19 F and 22 Ne. In relation to the stable isotopes, we find that only the most massive models, ≥60 and ≥40 M ⊙ give positive 19 F and 22 Ne yields, respectively, depending on the initial rotation rate. In relation to the radioactive isotopes, we find that the ESS abundances of 26 Al and 41 Ca can be matched with by models with initial masses ≥40 M ⊙ , while 36 Cl is matched only by our most massive models, ≥60 M ⊙ . 60 Fe is not significantly produced by any wind model, as required by the observations. Therefore, massive star winds are a favored candidate for the origin of the very short-lived 26 Al, 36 Cl, and 41 Ca in the ESS. 
    more » « less
  3. Abstract What is the origin of the oxygen we breathe, the hydrogen and oxygen (in form of water H 2 O) in rivers and oceans, the carbon in all organic compounds, the silicon in electronic hardware, the calcium in our bones, the iron in steel, silver and gold in jewels, the rare earths utilized, e.g. in magnets or lasers, lead or lithium in batteries, and also of naturally occurring uranium and plutonium? The answer lies in the skies. Astrophysical environments from the Big Bang to stars and stellar explosions are the cauldrons where all these elements are made. The papers by Burbidge (Rev Mod Phys 29:547–650, 1957) and Cameron (Publ Astron Soc Pac 69:201, 1957), as well as precursors by Bethe, von Weizsäcker, Hoyle, Gamow, and Suess and Urey provided a very basic understanding of the nucleosynthesis processes responsible for their production, combined with nuclear physics input and required environment conditions such as temperature, density and the overall neutron/proton ratio in seed material. Since then a steady stream of nuclear experiments and nuclear structure theory, astrophysical models of the early universe as well as stars and stellar explosions in single and binary stellar systems has led to a deeper understanding. This involved improvements in stellar models, the composition of stellar wind ejecta, the mechanism of core-collapse supernovae as final fate of massive stars, and the transition (as a function of initial stellar mass) from core-collapse supernovae to hypernovae and long duration gamma-ray bursts (accompanied by the formation of a black hole) in case of single star progenitors. Binary stellar systems give rise to nova explosions, X-ray bursts, type Ia supernovae, neutron star, and neutron star–black hole mergers. All of these events (possibly with the exception of X-ray bursts) eject material with an abundance composition unique to the specific event and lead over time to the evolution of elemental (and isotopic) abundances in the galactic gas and their imprint on the next generation of stars. In the present review, we want to give a modern overview of the nucleosynthesis processes involved, their astrophysical sites, and their impact on the evolution of galaxies. 
    more » « less
  4. We investigate the origin in the early Solar System of the short-lived radionuclide 244Pu (with a half life of 80 Myr) produced by the rapid (r) neutron-capture process. We consider two large sets of r-process nucleosynthesis models and analyse if the origin of 244Pu in the ESS is consistent with that of the other r and slow (s) neutron-capture process radioactive nuclei. Uncertainties on the r-process models come from both the nuclear physics input and the astrophysical site. The former strongly affects the ratios of isotopes of close mass (129I/127I, 244Pu/238U, and 247Pu/235U). The 129I/247Cm ratio, instead, which involves isotopes of a very different mass, is much more variable than those listed above and is more affected by the physics of the astrophysical site. We consider possible scenarios for the evolution of the abundances of these radioactive nuclei in the galactic interstellar medium and verify under which scenarios and conditions solutions can be found for the origin of 244Pu that are consistent with the origin of the other isotopes. Solutions are generally found for all the possible different regimes controlled by the interval (δ) between additions from the source to the parcel of interstellar medium gas that ended up in the Solar System, relative to decay timescales. If r-process ejecta in interstellar medium are mixed within a relatively small area (leading to a long δ), we derive that the last event that explains the 129I and 247Cm abundances in the early Solar System can also account for the abundance of 244Pu. Due to its longer half life, however, 244Pu may have originated from a few events instead of one only. If r-process ejecta in interstellar medium are mixed within a relatively large area (leading to a short δ), we derive that the time elapsed from the formation of the molecular cloud to the formation of the Sun was 9-16 Myr. 
    more » « less
  5. Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars. 
    more » « less