Attributed networks are a type of graph structured data used in many real-world scenarios. Detecting anomalies on attributed networks has a wide spectrum of applications such as spammer detection and fraud detection. Although this research area draws increasing attention in the last few years, previous works are mostly unsupervised because of expensive costs of labeling ground truth anomalies. Many recent studies have shown different types of anomalies are often mixed together on attributed networks and such invaluable human knowledge could provide complementary insights in advancing anomaly detection on attributed networks. To this end, we study the novel problem of modeling and integrating human knowledge of different anomaly types for attributed network anomaly detection. Specifically, we first model prior human knowledge through a novel data augmentation strategy. We then integrate the modeled knowledge in a Siamese graph neural network encoder through a well-designed contrastive loss. In the end, we train a decoder to reconstruct the original networks from the node representations learned by the encoder, and rank nodes according to its reconstruction error as the anomaly metric. Experiments on five real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art anomaly detection algorithms. 
                        more » 
                        « less   
                    
                            
                            Domain Adaptive 3D Pose Augmentation for In-the-wild Human Mesh Recovery
                        
                    
    
            The ability to perceive 3D human bodies from a single image has a multitude of applications ranging from entertainment and robotics to neuroscience and healthcare. A fundamental challenge in human mesh recovery is in collecting the ground truth 3D mesh targets required for training, which requires burdensome motion capturing systems and is often limited to indoor laboratories. As a result, while progress is made on benchmark datasets collected in these restrictive settings, models fail to generalize to real-world "in-the-wild" scenarios due to distribution shifts. We propose Domain Adaptive 3D Pose Augmentation (DAPA), a data augmentation method that enhances the model's generalization ability in in-the-wild scenarios. DAPA combines the strength of methods based on synthetic datasets by getting direct supervision from the synthesized meshes, and domain adaptation methods by using ground truth 2D keypoints from the target dataset. We show quantitatively that finetuning with DAPA effectively improves results on benchmarks 3DPW and AGORA. We further demonstrate the utility of DAPA on a challenging dataset curated from videos of real-world parent-child interaction. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2026498
- PAR ID:
- 10358710
- Date Published:
- Journal Name:
- International Conference on 3D Vision
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Despite achieving impressive improvement in accuracy, most existing monocular 3D human mesh reconstruction methods require large-scale 2D/3D ground-truths for supervision, which limits their applications on unlabeled in-the-wild data that is ubiquitous. To alleviate the reliance on 2D/3D ground-truths, we present a self-supervised 3D human pose and shape reconstruction framework that relies only on self-consistency between intermediate representations of images and projected 2D predictions. Specifically, we extract 2D joints and depth maps from monocular images as proxy inputs, which provides complementary clues to infer accurate 3D human meshes. Furthermore, to reduce the impacts from noisy and ambiguous inputs while better concentrate on the high-quality information, we design an uncertainty-aware module to automatically learn the reliability of the inputs at body-joint level based on the consistency between 2D joints and depth map. Experiments on benchmark datasets show that our approach outperforms other state-of-the-art methods at similar supervision levels.more » « less
- 
            Existing research on learning with noisy labels mainly focuses on synthetic label noise. Synthetic label noise, though has clean structures which greatly enable statistical analyses, often fails to model the real-world noise patterns. The recent literature has observed several efforts to offer real-world noisy datasets, e.g., Food-101N, WebVision, and Clothing1M. Yet the existing efforts suffer from two caveats: firstly, the lack of ground-truth verification makes it hard to theoretically study the property and treatment of real-world label noise. Secondly, these efforts are often of large scales, which may result in unfair comparisons of robust methods within reasonable and accessible computation power. To better understand real-world label noise, it is important to establish controllable and moderate-sized real-world noisy datasets with both ground-truth and noisy labels. This work presents two new benchmark datasets, which we name as CIFAR-10N, CIFAR-100N, equipping the training datasets of CIFAR-10 and CIFAR-100 with human-annotated real-world noisy labels that we collect from Amazon Mechanical Turk. We quantitatively and qualitatively show that real-world noisy labels follow an instance-dependent pattern rather than the classically assumed and adopted ones (e.g., class-dependent label noise). We then initiate an effort to benchmark a subset of the existing solutions using CIFAR-10N and CIFAR-100N. We further proceed to study the memorization of correct and wrong predictions, which further illustrates the difference between human noise and class-dependent synthetic noise. We show indeed the real-world noise patterns impose new and outstanding challenges as compared to synthetic label noise. These observations require us to rethink the treatment of noisy labels, and we hope the availability of these two datasets would facilitate the development and evaluation of future learning with noisy label solutions. The corresponding datasets and the leaderboard are publicly available at http://noisylabels.com.more » « less
- 
            One of the grand challenges in computer vision is to recover 3D poses and shapes of multiple human bodies with absolute scales from a single RGB image. The challenge stems from the inherent depth and scale ambiguity from a single view. The state of the art on 3D human pose and shape estimation mainly focuses on estimating the 3D joint locations relative to the root joint, defined as the pelvis joint. In this paper, a novel approach called Absolute-ROMP is proposed, which builds upon a one-stage multi-person 3D mesh predictor network, ROMP, to estimate multi-person 3D poses and shapes, but with absolute scales from a single RGB image. To achieve this, we introduce absolute root joint localization in the camera coordinate frame, which enables the estimation of 3D mesh coordinates of all persons in the image and their root joint locations normalized by the focal point. Moreover, a CNN and transformer hybrid network, called TransFocal, is proposed to predict the focal length of the image’s camera. This enables Absolute-ROMP to obtain absolute depth information of all joints in the camera coordinate frame, further improving the accuracy of our proposed method. The Absolute-ROMP is evaluated on the root joint localization and root-relative 3D pose estimation tasks on publicly available multi-person 3D pose datasets, and TransFocal is evaluated on a dataset created from the Pano360 dataset. Our proposed approach achieves state-of-the-art results on these tasks, outperforming existing methods or has competitive performance. Due to its real-time performance, our method is applicable to in-the-wild images and videos.more » « less
- 
            When navigating in urban environments, many of the objects that need to be tracked and avoided are heavily occluded. Planning and tracking using these partial scans can be challenging. The aim of this work is to learn to complete these partial point clouds, giving us a full understanding of the object's geometry using only partial observations. Previous methods achieve this with the help of complete, ground-truth annotations of the target objects, which are available only for simulated datasets. However, such ground truth is unavailable for real-world LiDAR data. In this work, we present a self-supervised point cloud completion algorithm, PointPnCNet, which is trained only on partial scans without assuming access to complete, ground-truth annotations. Our method achieves this via inpainting. We remove a portion of the input data and train the network to complete the missing region. As it is difficult to determine which regions were occluded in the initial cloud and which were synthetically removed, our network learns to complete the full cloud, including the missing regions in the initial partial cloud. We show that our method outperforms previous unsupervised and weakly-supervised methods on both the synthetic dataset, ShapeNet, and real-world LiDAR dataset, Semantic KITTI.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    