skip to main content


Title: ALGES: Active Learning with Gradient Embeddings for Semantic Segmentation of Laparoscopic Surgical Images
Annotating medical images for the purposes of training computer vision models is an extremely laborious task that takes time and resources away from expert clinicians. Active learning (AL) is a machine learning paradigm that mitigates this problem by deliberately proposing data points that should be labeled in order to maximize model performance. We propose a novel AL algorithm for segmentation, ALGES, that utilizes gradient embeddings to effectively select laparoscopic images to be labeled by some external oracle while reducing annotation effort. Given any unlabeled image, our algorithm treats predicted segmentations as truth and computes gradients with respect to the model parameters of the last layer in a segmentation network. The norms of these per-pixel gradient vectors correspond to the magnitude of the induced change in model parameters and contain rich information about the model’s predictive uncertainty. Our algorithm then computes gradients embeddings in two ways, and we employ a center-finding algorithm with these embeddings to procure representative and diverse batches in each round of AL. An advantage of our approach is extensibility to any model architecture and differentiable loss scheme for semantic segmentation. We apply our approach to a public data set of laparoscopic cholecystectomy images and show that it outperforms current AL algorithms in selecting the most informative data points for improving the segmentation model. Our code is available at https://github.com/josaklil-ai/surg-active-learning.  more » « less
Award ID(s):
2026498
NSF-PAR ID:
10358712
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of Machine Learning for Healthcare
Volume:
182
ISSN:
2689-9604
Page Range / eLocation ID:
1-19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Image segmentation is an essential step in biomedical image analysis. In recent years, deep learning models have achieved signi cant success in segmentation. However, deep learning requires the availability of large annotated data to train these models, which can be challenging in biomedical imaging domain. In this paper, we aim to accomplish biomedical image segmentation with limited labeled data using active learning. We present a deep active learning framework that selects additional data points to be annotated by combining U-Net with an efficient and effective query strategy to capture the most uncertain and representative points. This algorithm decouples the representative part by first finding the core points in the unlabeled pool and then selecting the most uncertain points from the reduced pool, which are different from the labeled pool. In our experiment, only 13% of the dataset was required with active learning to outperform the model trained on the entire 2018 MIC- CAI Brain Tumor Segmentation (BraTS) dataset. Thus, active learning reduced the amount of labeled data required for image segmentation without a signi cant loss in the accuracy. 
    more » « less
  2. Novel machine learning algorithms that make the best use of a significantly less amount of data are of great interest. For example, active learning (AL) aims at addressing this problem by iteratively training a model using a small number of labeled data, testing the whole data on the trained model, and then querying the labels of some selected data, which then are used for training a new model. This paper presents a fast and accurate data selection method, in which the selected samples are optimized to span the subspace of all data. We propose a new selection algorithm, referred to as iterative projection and matching (IPM), with linear complexity w.r.t. the number of data, and without any parameters to be tuned. In our algorithm, at each iteration, the maximum information from the structure of the data is captured by one selected sample, and the captured information is neglected in the next iterations by projection on the null-space of previously selected samples. The computational efficiency and the selection accuracy of our proposed algorithm outperform those of the conventional methods. Furthermore, the superiority of the proposed algorithm is shown on active learning for video action recognition dataset on UCF-101; learning using representatives on ImageNet; training a generative adversarial network (GAN) to generate multi-view images from a single-view input on CMU Multi-PIE dataset; and video summarization on UTE Egocentric dataset. 
    more » « less
  3. Traumatic brain injury (TBI) is a massive public health problem worldwide. Accurate and fast automatic brain hematoma segmentation is important for TBI diagnosis, treatment and outcome prediction. In this study, we developed a fully automated system to detect and segment hematoma regions in head Computed Tomography (CT) images of patients with acute TBI. We first over-segmented brain images into superpixels and then extracted statistical and textural features to capture characteristics of superpixels. To overcome the shortage of annotated data, an uncertainty-based active learning strategy was designed to adaptively and iteratively select the most informative unlabeled data to be annotated for training a Support Vector Machine classifier (SVM). Finally, the coarse segmentation from the SVM classifier was incorporated into an active contour model to improve the accuracy of the segmentation. From our experiments, the proposed active learning strategy can achieve a comparable result with 5 times fewer labeled data compared with regular machine learning. Our proposed automatic hematoma segmentation system achieved an average Dice coefficient of 0.60 on our dataset, where patients are from multiple health centers and at multiple levels of injury. Our results show that the proposed method can effectively overcome the challenge of limited and highly varied dataset. 
    more » « less
  4. The need for manual and detailed annotations limits the applicability of supervised deep learning algorithms in medical image analyses, specifically in the field of pathology. Semi-supervised learning (SSL) provides an effective way for leveraging unlabeled data to relieve the heavy reliance on the amount of labeled samples when training a model. Although SSL has shown good performance, the performance of recent state-of-the-art SSL methods on pathology images is still under study. The problem for selecting the most optimal data to label for SSL is not fully explored. To tackle this challenge, we propose a semi-supervised active learning framework with a region-based selection criterion. This framework iteratively selects regions for an-notation query to quickly expand the diversity and volume of the labeled set. We evaluate our framework on a grey-matter/white-matter segmentation problem using gigapixel pathology images from autopsied human brain tissues. With only 0.1% regions labeled, our proposed algorithm can reach a competitive IoU score compared to fully-supervised learning and outperform the current state-of-the-art SSL by more than 10% of IoU score and DICE coefficient. 
    more » « less
  5. The COVID-19 pandemic has intensified the need for home-based cardiac health monitoring systems. Despite advancements in electrocardiograph (ECG) and phonocardiogram (PCG) wearable sensors, accurate heart sound segmentation algorithms remain understudied. Existing deep learning models, such as convolutional neural networks (CNN) and recurrent neural networks (RNN), struggle to segment noisy signals using only PCG data. We propose a two-step heart sound segmentation algorithm that analyzes synchronized ECG and PCG signals. The first step involves heartbeat detection using a CNN-LSTM-based model on ECG data, and the second step focuses on beat-wise heart sound segmentation with a 1D U-Net that incorporates multi-modal inputs. Our method leverages temporal correlation between ECG and PCG signals to enhance segmentation performance. To tackle the label-hungry issue in AI-supported biomedical studies, we introduce a segment-wise contrastive learning technique for signal segmentation, overcoming the limitations of traditional contrastive learning methods designed for classification tasks. We evaluated our two-step algorithm using the PhysioNet 2016 dataset and a private dataset from Bayland Scientific, obtaining a 96.43 F1 score on the former. Notably, our segment-wise contrastive learning technique demonstrated effective performance with limited labeled data. When trained on just 1% of labeled PhysioNet data, the model pre-trained on the full unlabeled dataset only dropped 2.88 in the F1 score, outperforming the SimCLR method. Overall, our proposed algorithm and learning technique present promise for improving heart sound segmentation and reducing the need for labeled data. 
    more » « less