skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Understanding Factors that Influence Research Computing and Data Careers
Research Computing and Data (RCD) professionals play a crucial role in supporting and advancing research that involve data and/or computing, however, there is a critical shortage of RCD workforce, and organizations face challenges in recruiting and retaining RCD professional staff. It is not obvious to people outside of RCD how their skills and experience map to the RCD profession, and staff currently in RCD roles lack resources to create a professional development plan. To address these gaps, the CaRCC RCD Career Arcs working group has embarked upon an effort to gain a deeper understanding of the paths that RCD professionals follow across their careers. An important step in that effort is a recent survey the working group conducted of RCD professionals on key factors that influence decisions in the course of their careers. This survey gathered responses from over 200 respondents at institutions across the United States. This paper presents our initial findings and analyses of the data gathered. We describe how various genders, career stages, and types of RCD roles impact the ranking of these factors, and note that while there are differences across these groups, respondents were broadly consistent in their assessment of the importance of these factors. In some cases, the responses clearly distinguish RCD professionals from the broader workforce, and even other Information Technology professionals.  more » « less
Award ID(s):
2005632 2100003
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Practice and Experience in Advanced Research Computing (PEARC22)
Page Range / eLocation ID:
1 to 9
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  2. Societal Impact Statement

    Humans are dependent upon plants for oxygen, food, textiles, and medicines. Climate change and deforestation represent serious threats to our planet, causing significant disruptions to our ability to access and utilize these plant resources; this makes a botanically literate workforce and plant science careers more important than ever. Unfortunately, the current state of botanical career opportunities and training programs in the United States remains unclear. This study focuses on the current employment trends of government and private sector botanists and what skills future plant scientists will need to be successful in these careers.


    Plant science plays a crucial role in our society and in ongoing efforts to address many global challenges, including food insecurity and climate change. Yet, despite a predicted increase in plant science career opportunities in the United States, the botanical career landscape outside of academia is not well understood.

    To further our understanding of the training required for non‐academic botanical careers, the botanical sub‐disciplines used on the job, and career challenges faced by plant scientists, we surveyed 61 scientists working in government and 59 scientists working in the private sector in the United States.

    In both career sectors, > 80% of survey participants reported recent hires at the bachelor's degree level. New personnel with master's degrees were more commonly reported in the government sector (95%) than in the private sector (69%). Most plant scientists working in government reported a focus on plant ecology and resource management. By contrast, most industry/non‐profit work involved horticulture and biotechnology, with some specific skills spanning both sectors. Notably, one prediction made nearly a decade ago appears to be manifesting: plant scientists seem to be retiring more quickly than they are being replaced. Survey respondents reported that attempts to hire full‐time staff are met with obstacles, including insufficient funding. Plant science professionals in both career sectors emphasized their routine use of botanical skills developed as students, highlighting the need for effective training at the undergraduate level.

    We discuss the implications of these findings and present several recommendations for preparing future generations of plant scientists and increasing the scientific community's botanical capacity.

    more » « less
  3. Miller, Eva (Ed.)
    Nascent Professional Identity Development in Freshman Architecture, Engineering, and Construction (AEC) Women Increasing the persistence of talented women into male-dominated architecture, engineering, and construction (AEC) professions could reduce prevailing workforce shortages and improve gender diversity in AEC industry. Identity theorists advocate that professional identity development (PID) improves students’ persistence to become professionals. However, little empirical research exists to inform and guide AEC educators and professionals on AEC-PID in undergraduate AEC women. As the preliminary part of a larger nationwide and longitudinal research study investigating PID processes in undergraduate AEC women, the objective of this research is to examine the characteristics and nascent AEC-PID in 69 women enrolled in freshman AEC courses in five U.S. institutions. A purposive sampling approach ensures participants have a wide range of demographic characteristics. Data from a recruitment survey is analyzed using the NVivo qualitative data analysis software. Content and relational inductive open coding are conducted vertically for each participant and horizontally across different participants. Results indicate passion/interest, inherent abilities, significant others, benefits from industry, and desire to contribute to industry influence decisions to pursue AEC careers. With 52% of participants having science, technology, engineering, art, and math (STEAM) subject preferences, an in vivo code, Perfect Middle Ground, demonstrated the quest to combine STEM and visual art preferences in AEC career decisions. A participant noted that ‘this major (civil engineering) is the perfect middle ground because I can be creative, but still use my strong gift which happens to be math’. Girls with STEAM strengths and passion, particularly in math and fine art, are most likely to develop nascent AEC-PID. Beyond STEM pre-college programs, AEC educators should consider recruiting from sports, as well as visual and performing arts events for pre-college students. Participants’ positive views focus on the importance and significant societal impact of the AEC industry; while, negative views focus on the lack of gender and racial diversity. A combination of participants’ AEC professional experiences and views reveal four increasing levels of nascent AEC-PID which are categorized as the 4Ps: Plain, Passive, Progressive, and Proactive. As a guide to AEC education and professional communities, recommendations are made to increase the AEC-PID of women in each category. With the highest nascent AEC-PID, women in the Proactive category should serve as leaders in AEC classrooms and student organizations. Considering their AEC professional experience and enthusiasm, they should serve as peer mentors to other students, particularly AEC women. Furthermore, they should be given the opportunity to step into more complex roles during internships and encouraged to pursue co-op opportunities. Insights can guide more targeted recruitment, mentoring, preparation, and retention interventions that strengthen the persistence of the next generation of AEC women professionals. In the long term, this could reduce AEC workforce shortages, improve gender diversity, and foster the innovation and development of more gender friendly AEC products and services. 
    more » « less
  4. The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44. 
    more » « less
  5. This paper describes an evidence based-practice paper to a formative response to the engineering faculty and students’ needs at Anonymous University. Within two weeks, the pandemic forced the vast majority of the 1.5 million faculty and 20 million students nationwide to transition all courses from face-to-face to entirely online. Never in the history of higher education has there been a concerted effort to adapt so quickly and radically, nor have we had the technology to facilitate such a rapid and massive change. At Anonymous University, over 700 engineering educators were racing to transition their courses. Many of those faculty had never experienced online course preparation, much less taught one synchronously or asynchronously. Faculty development centers and technology specialists across the university made a great effort to aid educators in this transition. These educators had questions about the best practices for moving online, how their students were affected, and the best ways to engage their students. However, these faculty’s detailed questions were answerable only by faculty peers’ experience, students’ feedback, and advice from experts in relevant engineering education research-based practices. This paper describes rapid, continuous, and formative feedback provided by the Engineering Education Faculty Group (EEFG) to provide an immediate response for peer faculty guidance during the pandemic, creating a community of practice. The faculty membership spans multiple colleges in the university, including engineering, education, and liberal arts. The EEFG transitioned immediately to weekly meetings focused on the rapidly changing needs of their colleagues. Two surveys were generated rapidly by Hammond et al. to characterize student and faculty concerns and needs in March of 2020 and were distributed through various means and media. Survey 1 and 2 had 3381 and 1506 respondents respectively with most being students, with 113 faculty respondents in survey 1, the focus of this piece of work. The first survey was disseminated as aggregated data to the College of Engineering faculty with suggested modifications to course structures based on these findings. The EEFG continued to meet and collaborate during the remainder of the Spring 2020 semester and has continued through to this day. This group has acted as a hub for teaching innovation in remote online pedagogy and techniques, while also operating as a support structure for members of the group, aiding those members with training in teaching tools, discussion difficult current events, and various challenges they are facing in their professional teaching lives. While the aggregated data gathered from the surveys developed by Hammond et al. was useful beyond measure in the early weeks of the pandemic, little attention at the time was given to the responses of faculty to that survey. The focus of this work has been to characterize faculty perceptions at the beginning of the pandemic and compare those responses between engineering and non-engineering faculty respondents, while also comparing reported perceptions of pre- and post-transition to remote online teaching. Interviews were conducted between 4 members of the EEFG with the goal of characterizing some of the experiences they have had while being members of the group during the time of the pandemic utilizing Grounded theory qualitative analysis. 
    more » « less