skip to main content


Search for: All records

Award ID contains: 2005632

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Meeting the United Nation’ Sustainable Development Goals (SDGs) calls for an integrative scientific approach, combining expertise, data, models and tools across many disciplines towards addressing sustainability challenges at various spatial and temporal scales. This holistic approach, while necessary, exacerbates the big data and computational challenges already faced by researchers. Many challenges in sustainability research can be tackled by harnessing the power of advanced cyberinfrastructure (CI). The objective of this paper is to highlight the key components and technologies of CI necessary for meeting the data and computational needs of the SDG research community. An overview of the CI ecosystem in the United States is provided with a specific focus on the investments made by academic institutions, government agencies and industry at national, regional, and local levels. Despite these investments, this paper identifies barriers to the adoption of CI in sustainability research that include, but are not limited to access to support structures; recruitment, retention and nurturing of an agile workforce; and lack of local infrastructure. Relevant CI components such as data, software, computational resources, and human-centered advances are discussed to explore how to resolve the barriers. The paper highlights multiple challenges in pursuing SDGs based on the outcomes of several expert meetings. These include multi-scale integration of data and domain-specific models, availability and usability of data, uncertainty quantification, mismatch between spatiotemporal scales at which decisions are made and the information generated from scientific analysis, and scientific reproducibility. We discuss ongoing and future research for bridging CI and SDGs to address these challenges.

     
    more » « less
  2. Research Computing and Data (RCD) professionals play a crucial role in supporting and advancing research that involve data and/or computing, however, there is a critical shortage of RCD workforce, and organizations face challenges in recruiting and retaining RCD professional staff. It is not obvious to people outside of RCD how their skills and experience map to the RCD profession, and staff currently in RCD roles lack resources to create a professional development plan. To address these gaps, the CaRCC RCD Career Arcs working group has embarked upon an effort to gain a deeper understanding of the paths that RCD professionals follow across their careers. An important step in that effort is a recent survey the working group conducted of RCD professionals on key factors that influence decisions in the course of their careers. This survey gathered responses from over 200 respondents at institutions across the United States. This paper presents our initial findings and analyses of the data gathered. We describe how various genders, career stages, and types of RCD roles impact the ranking of these factors, and note that while there are differences across these groups, respondents were broadly consistent in their assessment of the importance of these factors. In some cases, the responses clearly distinguish RCD professionals from the broader workforce, and even other Information Technology professionals. 
    more » « less
  3. null (Ed.)