skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vehicle Model Predictive Trajectory Tracking Control with Curvature and Friction Preview
Autonomous vehicle trajectory tracking control is challenged by situations of varying road surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services, vehicles may have access to upcoming roadway information, particularly the friction and curvature in the road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed planning and tracking control are integrated to ensure the vehicle can slow down appropriately before encountering hazardous road conditions. This approach has two major advantages. First, the prior knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid violation of tire force limits while keeping performance and stability guarantees. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a sharply curving road with varying friction conditions, with results showing that the controller can drive a vehicle up to the handling limits and track the desired trajectory accurately.  more » « less
Award ID(s):
1931927
PAR ID:
10358819
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 10th Annual IFAC Advances in Automotive Control Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vehicles are highly likely to lose control unexpectedly when encountering unforeseen hazardous road friction conditions. With automation and connectivity increasingly available to assist drivers, vehicle performance can significantly benefit from a road friction preview map, particularly to identify where and how friction ahead of a vehicle may be suddenly decreasing. Although many techniques enable the vehicle to measure the local friction as driving upon a surface, these encounters limit the ability of a vehicle to slow down before a low-friction surface is already encountered. Using the connectivity of connected and autonomous vehicles (CAVs), a global road friction map can be created by aggregating information from vehicles. A challenge in the creation of these global friction maps is the very large quantity of data involved, and that the measurements populating the map are generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road friction map generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories of CAVs into a road surface grid. And through clustering the friction grids further, an insight of this work is that the friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space and a friction value within the box. To demonstrate the method, a simulation is presented that integrates traffic simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface where friction is changing in space, particularly over a bridge segment. The experimental results indicate that the road friction distribution can be measured effectively by collecting and aggregating the friction data from CAVs. By defining a cloud-based data sharing method for the networks of CAVs, this road friction mapping strategy provides great potential for improving CAVs' control performance and stability via database-mediated feedback systems. 
    more » « less
  2. Due to the lack of information, current vehicle control systems generally assume that the road friction conditions ahead of a vehicle are unchanged relative to those at the vehicle's current position. This can result in dangerous situations if the friction is suddenly decreasing from the current situation, or overly conservative driving styles if the friction of the current situation is worse than the roadway ahead. However, with connectivity either to other vehicles, infrastructure, or cloud services, future vehicles may have access to upcoming roadway information; this is particularly valuable for planning velocity trajectories that consider the friction and geometry in the road path ahead. This paper introduces a method for planning longitudinal speed profiles for Connected and Autonomous Vehicles (CAVs) that have previewed information about path geometry and friction conditions. The novelty of this approach is to explicitly include consideration of the friction ellipse available along the intended path. The paper derives an analytical solution for certain preview cases that upper-bounds the allowable vehicle velocity profile while preventing departure from the friction ellipse. The results further define the relationship between a lower bound on friction, the path geometry, and minimum friction preview distance. This relationship is used to ensure the vehicle has sufficient time to take action for upcoming hazardous situations. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a curving road with changing friction conditions, with results showing that, with sufficient preview, the vehicle could anticipate allowable and stable path keeping speed. 
    more » « less
  3. Vehicles can easily lose control unexpectedly when encountering unforeseen hazardous road friction conditions. With automation and connectivity increasingly available to assist drivers, vehicle performance can significantly benefit from a road friction preview map, particularly to identify where and how friction ahead of a vehicle may be suddenly decreasing. Although many techniques enable the vehicle to measure the local friction as driving upon a surface, these encounters limit the ability of a vehicle to slow down before a low-friction surface is already encountered. Using the connectivity of connected and autonomous vehicles (CAVs), a global road friction map can be created by aggregating information from vehicles. A challenge in the creation of these global friction maps is the very large quantity of data involved, and that the measurements populating the map are generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road friction map generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories of CAVs into a road surface grid. In addition, through clustering the friction grids further, an insight of this work is that the friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space, a friction value, and a confidence interval within the box. To demonstrate the method, a simulation is presented that integrates traffic simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface, where friction is changing in space, particularly over a bridge segment. The experimental results indicate that the road friction distribution can be measured effectively by collecting and aggregating the friction data from CAVs. 
    more » « less
  4. This paper presents an integrated motion planning system for autonomous vehicle (AV) parking in the presence of other moving vehicles. The proposed system includes 1) a hybrid environment predictor that predicts the motions of the surrounding vehicles and 2) a strategic motion planner that reacts to the predictions. The hybrid environment predictor performs short-term predictions via an extended Kalman filter and an adaptive observer. It also combines short-term predictions with a driver behavior cost-map to make long-term predictions. The strategic motion planner comprises 1) a model predictive control-based safety controller for trajectory tracking; 2) a search-based retreating planner for finding an evasion path in an emergency; 3) an optimization-based repairing planner for planning a new path when the original path is invalidated. Simulation validation demonstrates the effectiveness of the proposed method in terms of initial planning, motion prediction, safe tracking, retreating in an emergency, and trajectory repairing. 
    more » « less
  5. Abstract As a severe tire failure, tire blowout during driving can significantly threaten vehicle stability and road safety. Tire blowout models were developed in the literature to conclude that a vehicle always deviates to the tire blowout side. However, this conclusion is proved to be inaccurate in this paper, since one important factor was largely ignored in the existing tire blowout models. Toe angle, as a basic and widely applied setup on ground vehicles, can provide preset and symmetric lateral tire forces for normal driving. However, when tire blowout occurs, different toe angle setups can impact vehicle motions in different ways. For the first time, the toe angle is explicitly considered and integrated into a tire blowout model in this paper. For different tire blowout locations, driving maneuvers, and drivetrain configurations, the impacts of different toe angle setups on the variations of tire friction forces and vehicle motions are analyzed. The developed tire blowout model with toe angles is validated through both high-fidelity carsim simulation results and experimental results of a scaled test vehicle. Both simulation and experimental results show that a vehicle may not deviate to the tire blowout side, depending on the toe angle setups and driving maneuvers. Moreover, the experimental results also validate that the proposed tire blowout model can accurately evaluate the tire blowout impacts on vehicle dynamics. 
    more » « less