Spatial and Temporal Control of Photomediated Disulfide–Ene and Thiol–Ene Chemistries for Two-Stage Polymerizations
- Award ID(s):
- 1808484
- PAR ID:
- 10358839
- Date Published:
- Journal Name:
- Macromolecules
- Volume:
- 55
- Issue:
- 5
- ISSN:
- 0024-9297
- Page Range / eLocation ID:
- 1811 to 1821
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The molecules 1,1-difluorosilacyclopent-3-ene (3SiCPF 2 ) and silacyclopent-3-ene (3SiCP) have been synthesized and studied using chirped pulse, Fourier transform microwave (CP-FTMW) spectroscopy. For 3SiCP this is the first ever microwave study of the molecule and, for 3SiCPF 2 , the spectra reported in this work have been combined with that of previous work in a global fit. The spectra of each contain splitting which has been fit using a Hamiltonian consisting of semirigid and Coriolis coupling parameters. A refit of the original 3SiCPF 2 work was also carried out. All fits and approaches are reported. Analyses of the spectra provide evidence that the molecule is planar which is in agreement with the high-level calculations, but the source of the splitting in the spectra has not been determined.more » « less
-
Thermoset networks are chemically cross-linked materials that exhibit high heat resistance and mechanical strength; however, the permanently cross-linked system makes end-of-life degradation difficult. Thermosets that are inherently degradable and made from renewably derived starting materials are an underexplored area in sustainable polymer chemistry. Here, we report the synthesis of novel sugar- and terpene-based monomers as the enes in thiol–ene network formation. The resulting networks showed varied mechanical properties depending on the thiol used during cross-linking, ranging from strain-at-breaks of 12 to 200%. Networks with carveol or an isosorbide-based thiol incorporated showed plastic deformation under tensile stress testing, while geraniol-containing networks demonstrated linear stress–strain behavior. The storage modulus at the rubbery plateau was highly dependent on the thiol cross-linker, showing an order of magnitude difference between commercial PETMP, DTT, and synthesized Iso2MC. Thermal degradation temperatures were low for the networks, primarily below 200 °C, and the Tg values ranged from −17 to 31 °C. Networks were rapidly degraded under basic conditions, showing complete degradation after 2 days for nearly all synthesized thermosets. This library demonstrates the range of thermal and mechanical properties that can be targeted using monomers from sugars and terpenes and expands the field of renewably derived and degradable thermoset network materials.more » « less