skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparative Study on Single-handed Keyboards on Large-screen Mobile Devices
Many questions regarding single-hand text entry on modern smartphones (in particular, large-screen smartphones) remain under-explored, such as, (i) will the existing prevailing single-handed keyboards fit for large-screen smartphone users? and (ii) will individual customization improve single-handed keyboard performance? In this paper we study single-handed typing behaviors on several representative keyboards on large-screen mobile devices.We found that, (i) the user-adaptable-shape curved keyboard performs best among all the studied keyboards; (ii) users’ familiarity with the Qwerty layout plays a significant role at the beginning, but after several sessions of training, the user-adaptable curved keyboard can have the best learning curve and performs best; (iii) generally the statistical decoding algorithms via spatial and language models can well handle the input noise from single-handed typing.  more » « less
Award ID(s):
2005430
PAR ID:
10359115
Author(s) / Creator(s):
;
Editor(s):
Bottoni, Paolo; Panizzi, Emanuele
Date Published:
Journal Name:
AVI 2022: Proceedings of the 2022 International Conference on Advanced Visual Interfaces
Page Range / eLocation ID:
4:1 - 4:9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Accessible onscreen keyboards require people who are blind to keep out their phone at all times to search for visual affordances they cannot see. Is it possible to re-imagine text entry without a reference screen? To explore this question, we introduce screenless keyboards as aural flows (keyflows): rapid auditory streams of Text-To-Speech (TTS) characters controllable by hand gestures. In a study, 20 screen-reader users experienced keyflows to perform initial text entry. Typing took inordinately longer than current screen-based keyboards, but most participants preferred screen-free text entry to current methods, especially for short messages on-the-go. We model navigation strategies that participants enacted to aurally browse entirely auditory keyboards and discuss their limitation and benefits for daily access. Our work points to trade-offs in user performance and user experience for situations when blind users may trade typing speed with the benefit of being untethered from the screen. 
    more » « less
  2. Text entry is a common and important part of many intelligent user interfaces. However, inferring a user’s intended text from their input can be challenging: motor actions can be imprecise, input sensors can be noisy, and situations or disabilities can hamper a user’s perception of interface feedback. Numerous prior studies have explored input on touchscreen phones, smartwatches, in midair, and on desktop keyboards. Based on these prior studies, we are releasing a large and diverse data set of noisy typing input consisting of thousands of sentences written by hundreds of users on QWERTY-layout keyboards. This paper describes the various subsets contained in this new research dataset as well as the data format. 
    more » « less
  3. Abstract Objective.The RSVP Keyboard is a non-implantable, event-related potential-based brain-computer interface (BCI) system designed to support communication access for people with severe speech and physical impairments. Here we introduce inquiry preview (IP), a new RSVP Keyboard interface incorporating switch input for users with some voluntary motor function, and describe its effects on typing performance and other outcomes.Approach.Four individuals with disabilities participated in the collaborative design of possible switch input applications for the RSVP Keyboard, leading to the development of IP and a method of fusing switch input with language model and electroencephalography (EEG) evidence for typing. Twenty-four participants without disabilities and one potential end user with incomplete locked-in syndrome took part in two experiments investigating the effects of IP and two modes of switch input on typing accuracy and speed during a copy-spelling task.Main results.For participants without disabilities, IP and switch input tended to worsen typing performance compared to the standard RSVP Keyboard condition, with more consistent effects across participants for speed than for accuracy. However, there was considerable variability, with some participants demonstrating improved typing performance and better user experience (UX) with IP and switch input. Typing performance for the potential end user was comparable to that of participants without disabilities. He typed most quickly and accurately with IP and switch input and gave favorable UX ratings to those conditions, but preferred standard RSVP Keyboard.Significance.IP is a novel multimodal interface for the RSVP Keyboard BCI, incorporating switch input as an additional control signal. Typing performance and UX and preference varied widely across participants, reinforcing the need for flexible, customizable BCI systems that can adapt to individual users. ClinicalTrials.gov Identifier: NCT04468919. 
    more » « less
  4. Accuracy and speed are pivotal when it comes to typing. Mixed reality headsets offer users the groundbreaking ability to project virtual objects into the physical world. However, when typing on a virtual keyboard in mixed reality space, users lose the tactile feedback that comes with a physical keyboard, making typing much more difficult. Our goal was to explore the capability of users to type using all ten fingers on a virtual key in mixed reality. We measured user performance when typing with index fingers versus all ten fingers. We also examined the usage of eye-tracking to disable all keys the user wasn’t looking at, and the effect it had on improving speed and accuracy. Our findings so far indicate that, while eyetracking seems to help accuracy, it is not enough to bring 10 finger typing up to the same level of performance as index finger typing. 
    more » « less
  5. null (Ed.)
    We investigate typing on a QWERTY keyboard rendered in virtual reality. Our system tracks users’ hands in the virtual environment via a Leap Motion mounted on the front of a head mounted display. This allows typing on an auto-correcting midair keyboard without the need for auxiliary input devices such as gloves or handheld controllers. It supports input via the index fingers of one or both hands. We compare two keyboard designs: a normal QWERTY layout and a split layout. We found users typed at around 16 words-per-minute using one or both index fingers on the normal layout, and about 15 words-per-minute using both index fingers on the split layout. Users had a corrected error rate below 2% in all cases. To explore midair typing with limited or no visual feedback, we had users type on an invisible keyboard. Users typed on this keyboard at 11 words-per-minute at an error rate of 3.3% despite the keyboard providing almost no visual feedback. 
    more » « less