skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robustness Certificates for Implicit Neural Networks: A Mixed Monotone Contractive Approach
Implicit neural networks are a general class of learning models that replace the layers in traditional feedforward models with implicit algebraic equations. Compared to traditional learning models, implicit networks offer competitive performance and reduced memory consumption. However, they can remain brittle with respect to input adversarial perturbations. This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks; our framework blends together mixed monotone systems theory and contraction theory. First, given an implicit neural network, we introduce a related embedded network and show that, given an infinity-norm box constraint on the input, the embedded network provides an infinity-norm box overapproximation for the output of the original network. Second, using infinity-matrix measures, we propose sufficient conditions for well-posedness of both the original and embedded system and design an iterative algorithm to compute the infinity-norm box robustness margins for reachability and classification problems. Third, of independent value, we show that employing a suitable relative classifier variable in our analysis will lead to tighter bounds on the certified adversarial robustness in classification problems. Finally, we perform numerical simulations on a Non-Euclidean Monotone Operator Network (NEMON) trained on the MNIST dataset. In these simulations, we compare the accuracy and run time of our mixed monotone contractive approach with the existing robustness verification approaches in the literature for estimating the certified adversarial robustness.  more » « less
Award ID(s):
1836932
PAR ID:
10359156
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of The 4th Annual Learning for Dynamics and Control Conference, PMLR
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Forward invariance is a long-studied property in control theory that is used to certify that a dynamical system stays within some pre-specified set of states for all time, and also admits robustness guarantees (e.g., the certificate holds under perturbations). We propose a general framework for training and provably certifying robust forward invariance in Neural ODEs. We apply this framework in two settings: certified adversarial robustness for image classification, and certified safety in continuous control. Notably, our method empirically produces superior adversarial robustness guarantees compared to prior work on certifiably robust Neural ODEs (including implicit-depth models). 
    more » « less
  2. null (Ed.)
    A robustness certificate is the minimum distance of a given input to the decision boundary of the classifier (or its lower bound). For {\it any} input perturbations with a magnitude smaller than the certificate value, the classification output will provably remain unchanged. Exactly computing the robustness certificates for neural networks is difficult since it requires solving a non-convex optimization. In this paper, we provide computationally-efficient robustness certificates for neural networks with differentiable activation functions in two steps. First, we show that if the eigenvalues of the Hessian of the network are bounded, we can compute a robustness certificate in the l2 norm efficiently using convex optimization. Second, we derive a computationally-efficient differentiable upper bound on the curvature of a deep network. We also use the curvature bound as a regularization term during the training of the network to boost its certified robustness. Putting these results together leads to our proposed {\bf C}urvature-based {\bf R}obustness {\bf C}ertificate (CRC) and {\bf C}urvature-based {\bf R}obust {\bf T}raining (CRT). Our numerical results show that CRT leads to significantly higher certified robust accuracy compared to interval-bound propagation (IBP) based training. We achieve certified robust accuracy 69.79\%, 57.78\% and 53.19\% while IBP-based methods achieve 44.96\%, 44.74\% and 44.66\% on 2,3 and 4 layer networks respectively on the MNIST-dataset. 
    more » « less
  3. Neural networks are an increasingly common tool for solving problems that require complex analysis and pattern matching, such as identifying stop signs in a self driving car or processing medical imagery during diagnosis. Accordingly, verification of neural networks for safety and correctness is of great importance, as mispredictions can have catastrophic results in safety critical domains. As neural networks are known to be sensitive to small changes in input, leading to vulnerabilities and adversarial attacks, analyzing the robustness of networks to small changes in input is a key piece of evaluating their safety and correctness. However, there are many real-world scenarios where the requirements of robustness are not clear cut, and it is crucial to develop measures that assess the level of robustness of a given neural network model and compare levels of robustness across different models, rather than using a binary characterization such as robust vs. not robust. We believe there is great need for developing scalable quantitative robustness verification techniques for neural networks. Formal verification techniques can provide guarantees of correctness, but most existing approaches do not provide quantitative robustness measures and are not effective in analyzing real-world network sizes. On the other hand, sampling-based quantitative robustness is not hindered much by the size of networks but cannot provide sound guarantees of quantitative results. We believe more research is needed to address the limitations of both symbolic and sampling-based verification approaches and create sound, scalable techniques for quantitative robustness verification of neural networks. 
    more » « less
  4. In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassing the vanilla iterative batch-by-batch training in DP DNNs. An end-to-end theoretical analysis and evaluations show that our mechanism notably improves the robustness and scalability of DP DNNs. 
    more » « less
  5. null (Ed.)
    In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassing the vanilla iterative batch-by-batch training in DP DNNs. An end-to-end theoretical analysis and evaluations show that our mechanism notably improves the robustness and scalability of DP DNNs. 
    more » « less