skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arctic and sub-Arctic lake water δ2H and δ18O along a coastal-inland transect: Implications for interpreting water isotope proxy records
Award ID(s):
1652274
PAR ID:
10359317
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Hydrology
Volume:
607
Issue:
C
ISSN:
0022-1694
Page Range / eLocation ID:
127556
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Water (in)security is central to achieving sustainable development in Arctic communities. To characterize the pervasive and place-based challenges faced by Arctic residents and communities, water insecurity can be examined across five dimensions (i.e., availability, accessibility, safety, reliability and preference). Based on an analysis of 61 studies, this narrative review synthesizes how the human dimensions of Arctic water insecurity have been measured in the scientific literature. This review serves as a resource for researchers, policymakers and practitioners when selecting measures of water insecurity based on past studies, and for addressing knowledge gaps through the development of new measures in partnership with Arctic and Indigenous communities. Faced with rapid climatic and societal change, enhanced human-centered measures of water insecurity in the Arctic will enable future research, policy, monitoring, management and stewardship. This is necessary to achieve the human right to water and Sustainable Development Goal of clean water and sanitation for all. 
    more » « less
  2. Surface water change has been documented across the Arctic due to thawing permafrost and changes in the precipitation/evapotranspiration balance. This dataset uses Moderate Resolution Imaging Spectroradiometer (MODIS) data to track changes in surface water across the region over the past two decades. The superfine water index (SWI) is a unitless global water cover index developed specifically for MODIS data and validated in high northern latitudes. Variation in SWI can also track changes in surface water that occur at the sub-MODIS pixel scale (i.e., changes in water bodies smaller a MODIS pixel, ~500 meters (m)). This dataset (1) maps the average July SWI over pan-Arctic for each year of the MODIS record (2000-2021) and (2) maps the trends in July SWI over 2000-2012 (i.e., Sen's slope of the pixel-wise SWI vs. time). The spatial resolution of this dataset is ~500 m. The yearly SWI files are processed for the entire continuous and discontinuous permafrost zone. The 2000-2021 trend file is processed for lake-rich regions of the Arctic (i.e., lake coverage greater than 5%), as was published in the Webb et al, 2022 paper. The 2000-2022 trend file is processed for the entire continuous and discontinuous permafrost zone. Corresponding publication: Webb, Elizabeth E., Anna K. Liljedahl, Jada A. Cordeiro, Michael M. Loranty, Chandi Witharana, and Jeremy W. Lichstein (2022), Permafrost thaw drives surface water decline across lake-rich regions of the Arctic, Nature Climate Change, doi.org/10.1038/s41558-022-01455-w 
    more » « less
  3. Abstract The Pacific inflow to the Arctic traditionally brings heat in summer, melting sea ice; dense waters in winter, refreshing the Arctic’s cold halocline; and nutrients year‐round, supporting Arctic ecosystems. Bering Strait moorings from 1990 to 2019 find increasing (0.010 ± 0.006 Sv/yr) northward flow, reducing Chukchi residence times by ∼1.5 months over this period (record maximum/minimum ∼7.5 and ∼4.5 months). Annual mean temperatures warm significantly (0.05 ± 0.02°C/yr), with faster change (∼0.1°C/yr) in warming (June/July) and cooling (October/November) months, which are now 2°C to 4°C above climatology. Warm (≥0°C) water duration increased from 5.5 months (the 1990s) to over 7 months (2017), mostly due to earlier warming (1.3 ± 0.7 days/yr). Dramatic winter‐only (January–March) freshening (0.03 psu/yr) makes winter waters fresher than summer waters. The resultant winter density change, too large to be compensated by Chukchi sea‐ice processes, shoals the Pacific Winter Water (PWW) equilibrium depth in the Arctic from 100–150 to 50–100 m, implying PWW no longer ventilates the Arctic’s cold halocline at 33.1 psu. 
    more » « less