skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pan-Arctic surface water (yearly and trend over time) 2000-2022
Surface water change has been documented across the Arctic due to thawing permafrost and changes in the precipitation/evapotranspiration balance. This dataset uses Moderate Resolution Imaging Spectroradiometer (MODIS) data to track changes in surface water across the region over the past two decades. The superfine water index (SWI) is a unitless global water cover index developed specifically for MODIS data and validated in high northern latitudes. Variation in SWI can also track changes in surface water that occur at the sub-MODIS pixel scale (i.e., changes in water bodies smaller a MODIS pixel, ~500 meters (m)). This dataset (1) maps the average July SWI over pan-Arctic for each year of the MODIS record (2000-2021) and (2) maps the trends in July SWI over 2000-2012 (i.e., Sen's slope of the pixel-wise SWI vs. time). The spatial resolution of this dataset is ~500 m. The yearly SWI files are processed for the entire continuous and discontinuous permafrost zone. The 2000-2021 trend file is processed for lake-rich regions of the Arctic (i.e., lake coverage greater than 5%), as was published in the Webb et al, 2022 paper. The 2000-2022 trend file is processed for the entire continuous and discontinuous permafrost zone. Corresponding publication: Webb, Elizabeth E., Anna K. Liljedahl, Jada A. Cordeiro, Michael M. Loranty, Chandi Witharana, and Jeremy W. Lichstein (2022), Permafrost thaw drives surface water decline across lake-rich regions of the Arctic, Nature Climate Change, doi.org/10.1038/s41558-022-01455-w  more » « less
Award ID(s):
1927872 2052107
PAR ID:
10554719
Author(s) / Creator(s):
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
surface water permafrost Arctic lakes
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 20 July 2022 at Novo Basin on the Arctic Coastal Plain of northern Alaska. 332 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 43 hectares (ha). The drone system was flown at 100 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). 
    more » « less
  2. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 23 July 2022 at Derksen and Schmutz Basins on the Arctic Coastal Plain of northern Alaska. 6,158 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 580 hectares (ha). The drone system was flown at 100 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). 
    more » « less
  3. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 19 and 20 July 2022 at the Bugeye Lakes Complex on the Arctic Coastal Plain of northern Alaska. 5,968 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 320 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 7–8 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. 
    more » « less
  4. Supra-permafrost submarine groundwater discharge (SGD) in the Arctic is poorly understood, yet has the potential to increase over the coming decades due to climate change. This study uses radium (Ra) isotopes to investigate this process by constraining seasonal SGD inputs to an Arctic coastal lagoon (Simpson Lagoon, AK). Within this dataset are 224Ra, 223Ra, 228Ra, and 226Ra activities for surface water samples (lagoon, rivers) and groundwater samples across three seasons: thaw (June 2022), open water (August 2021 and July 2022), and freeze up (September/October 2022). Experimentally determined valued for Ra desorption from riverine suspended sediments and diffusive fluxes from bottom sediments are also included. 
    more » « less
  5. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of environmental sensor records that record temperature and water level at three lakes in the Bugeye Lakes Complex in 2021 and 2022. Onset HOBO water level loggers (U2OL-04) were deployed in Bugeye Lakes 1, 2, and 4 in 2021 and 2022 to record temperature and pressure changes at 30-minute intervals. Water level was determined in Onset Hoboware Pro v. 3.7.23 using the barometric compensation assistant based on pressure transducer measurements below the water and from nearby atmospheric pressure measurements from a local pressure transducer mounted to pole on the tundra. The sensor data capture the partial drainage of Bugeye Lakes 2 and 4 into Bugeye Lake 1. Bugeye Lakes 1 and 2 also measure snow dam outburst flooding associated with the recently drained lake basins. 
    more » « less