Rapid computational exploration of the free energy landscape of biological molecules remains an active area of research due to the difficulty of sampling rare state transitions in molecular dynamics (MD) simulations. In recent years, an increasing number of studies have exploited machine learning (ML) models to enhance and analyze MD simulations. Notably, unsupervised models that extract kinetic information from a set of parallel trajectories have been proposed including the variational approach for Markov processes (VAMP), VAMPNets, and time-lagged variational autoencoders (TVAE). In this work, we propose a combination of adaptive sampling with active learning of kinetic models to accelerate the discovery of the conformational landscape of biomolecules. In particular, we introduce and compare several techniques that combine kinetic models with two adaptive sampling regimes (least counts and multiagent reinforcement learning- based adaptive sampling) to enhance the exploration of conformational ensembles without introducing biasing forces. Moreover, inspired by the active learning approach of uncertainty-based sampling, we also present MaxEnt VAMPNet. This technique consists of restarting simulations from the microstates that maximize the Shannon entropy of a VAMPNet trained to perform the soft discretization of metastable states. By running simulations on two test systems, the WLALL pentapeptide and the villin headpiece subdomain, we empirically demonstrate that MaxEnt VAMPNet results in faster exploration of conformational landscapes compared with the baseline and other proposed methods.
more »
« less
Machine learning for molecular simulations of crystal nucleation and growth
Molecular simulations are a powerful tool in the study of crystallization and polymorphic transitions yielding detailed information of transformation mechanisms with high spatiotemporal resolution. How- ever, characterizing various crystalline and amorphous phases as well as sampling nucleation events and structural transitions remain extremely challenging tasks. The integration of machine learning with molecular simulations has the potential of unprecedented advancement in the area of crystal nucleation and growth. In this article, we discuss recent progress in the analysis and sampling of structural trans- formations aided by machine learning and the resulting potential future directions opening in this area.
more »
« less
- Award ID(s):
- 2224643
- PAR ID:
- 10359336
- Date Published:
- Journal Name:
- MRS bulletin
- Volume:
- 47
- ISSN:
- 1938-1425
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The phase transition of cadmium selenide (CdSe) from wurtzite to rocksalt structure has been the subject of extensive research. In this study, we present a novel approach combining machine learning potentials with swarm intelligence-based pathway sampling to elucidate the complex phase transition mechanisms in CdSe. We developed an accurate machine-learning (ML) potential for CdSe, validated against density functional theory calculations, achieving mean absolute errors (MAEs) of 1.8 meV/atom for energies and 33 meV/Å for forces. This potential was integrated with the pathway sampling via swarm intelligence and graph theory (PALLAS) method to explore the potential energy landscape and identify low-energy transition pathways. Our simulations revealed a complex network of transition pathways, and we discovered a multi-step transition mechanism involving an unexpected zinc blende intermediate phase, which appears to play a crucial role in facilitating the transition between wurtzite and rocksalt structures. This finding provides new insights into the structural flexibility of CdSe and offers an explanation for experimentally observed phenomena such as wurtzite/zinc blende coexistence in nanostructures. Our approach not only advances the fundamental understanding of phase transitions in CdSe but also establishes a powerful computational framework for exploring complex materials phenomena, opening new avenues for materials design and discovery in semiconductor systems.more » « less
-
Path sampling approaches have become invaluable tools to explore the mechanisms and dynamics of the so-called rare events that are characterized by transitions between metastable states separated by sizable free energy barriers. Their practical application, in particular to ever more complex molecular systems, is, however, not entirely trivial. Focusing on replica exchange transition interface sampling (RETIS) and forward flux sampling (FFS), we discuss a range of analysis tools that can be used to assess the quality and convergence of such simulations, which is crucial to obtain reliable results. The basic ideas of a step-wise evaluation are exemplified for the study of nucleation in several systems with different complexities, providing a general guide for the critical assessment of RETIS and FFS simulations.more » « less
-
Abstract Cooperativity is used by living systems to circumvent energetic and entropic barriers to yield highly efficient molecular processes. Cooperative structural transitions involve the concerted displacement of molecules in a crystalline material, as opposed to typical molecule-by-molecule nucleation and growth mechanisms which often break single crystallinity. Cooperative transitions have acquired much attention for low transition barriers, ultrafast kinetics, and structural reversibility. However, cooperative transitions are rare in molecular crystals and their origin is poorly understood. Crystals of 2-dimensional quinoidal terthiophene (2DQTT-o-B), a high-performance n-type organic semiconductor, demonstrate two distinct thermally activated phase transitions following these mechanisms. Here we show reorientation of the alkyl side chains triggers cooperative behavior, tilting the molecules like dominos. Whereas, nucleation and growth transition is coincident with increasing alkyl chain disorder and driven by forming a biradical state. We establish alkyl chain engineering as integral to rationally controlling these polymorphic behaviors for novel electronic applications.more » « less
-
Using molecular simulations, we study the processes of capillary condensation and capillary evaporation in model mesopores. To determine the phase transition pathway, as well as the corresponding free energy profile, we carry out enhanced sampling molecular simulations using entropy as a reaction coordinate to map the onset of order during the condensation process and of disorder during the evaporation process. The structural analysis shows the role played by intermediate states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the dependence of the free energy barrier on the pore width. Furthermore, we propose a method to build a machine learning model for the prediction of the free energy surfaces underlying capillary phase transition processes in mesopores.more » « less
An official website of the United States government

