skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine-Learned Free Energy Surfaces for Capillary Condensation and Evaporation in Mesopores
Using molecular simulations, we study the processes of capillary condensation and capillary evaporation in model mesopores. To determine the phase transition pathway, as well as the corresponding free energy profile, we carry out enhanced sampling molecular simulations using entropy as a reaction coordinate to map the onset of order during the condensation process and of disorder during the evaporation process. The structural analysis shows the role played by intermediate states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the dependence of the free energy barrier on the pore width. Furthermore, we propose a method to build a machine learning model for the prediction of the free energy surfaces underlying capillary phase transition processes in mesopores.  more » « less
Award ID(s):
1955403
PAR ID:
10316085
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Entropy
Volume:
24
Issue:
1
ISSN:
1099-4300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The phase transition from subcritical to supercritical conditions, referred to as transcritical behavior, significantly impacts the evaporation and fuel–air mixing in high-pressure liquid-fuel propulsion systems. Transcritical behavior is characterized as a transition from classical two-phase evaporation to a single-phase gas-like diffusion regime as surface tension and latent heat of vaporization reduce. However, the interfacial behavior represented by the surface tension coefficient and evaporation rate during this transition which are crucial inputs for Computational Fluid Dynamics (CFD) simulations of practical transcritical fuel spray is still missing. This study aims at developing new evaporation rate and surface tension models for transcritical n-dodecane droplets using molecular dynamics (MD) simulations irrespective of the droplet size. As MD simulations are primarily limited to the nanoscale, the new models can bridge the gap between MD and continuum simulations and enable the direct application of these findings to microscopic droplets. A new characteristic timescale, i.e., “undroplet time,” is defined which marks the transition from classical two-phase evaporation to single-phase gas-like diffusion behavior. The undroplet time indicates the onset of droplet core disintegration and penetration of nitrogen molecules into the droplet, which occurs after the vanishment of the surface tension. By normalizing the time with respect to the undroplet time, the rate of surface tension decay, evaporation rate, and the rate of droplet mass depletion become independent of the droplet size. Calculation of pairwise correlation coefficients for the entire MD results shows that both surface tension coefficient and evaporation rate are strongly correlated with the background temperature, while pressure and droplet size play a less significant role past the critical point. Therefore, new models for surface tension coefficient and evaporation rate spanning from sub- to supercritical conditions are developed as a function of background pressure and temperature, which can be used in continuum simulations. The identified phase change behavior based on the undroplet time shows a good agreement with the phase change regime maps obtained using microscale experiments and nanoscale MD predictions. 
    more » « less
  2. Evaporation adds moisture to the atmosphere, while condensation removes it. Condensation also adds thermal energy to the atmosphere, which must be removed from the atmosphere by radiative cooling. As a result of these two processes, there is a net flow of energy driven by surface evaporation adding energy and radiative cooling removing energy from the atmosphere. Here, we calculate the implied heat transport of this process to find the atmospheric heat transport in balance with the surface evaporation. In modern-day Earth-like climates, evaporation varies strongly between the equator and the poles, while the net radiative cooling in the atmosphere is nearly meridionally uniform, and as a consequence, the heat transport governed by evaporation is similar to the total poleward heat transport of the atmosphere. This analysis is free from cancellations between moist and dry static energy transports, which greatly simplifies the interpretation of atmospheric heat transport and its relationship to the diabatic heating and cooling that governs the atmospheric heat transport. We further demonstrate, using a hierarchy of models, that much of the response of atmospheric heat transport to perturbations, including increasing CO 2 concentrations, can be understood from the distribution of evaporation changes. These findings suggest that meridional gradients in surface evaporation govern atmospheric heat transport and its changes. 
    more » « less
  3. null (Ed.)
    An original methodology is suggested for evaluating the pore size distribution in carbons in the wide range of micro- and mesopores from 0.385 to 10 nm from a single isotherm of high-pressure adsorption of CO2 at 273 K. The proposed method is based on the reference theoretical isotherms calculated by Monte Carlo simulations in model pores of slit and cylindrical geometry. The relationship between the pore size and the pore filling pressure is established. Special attention is given to predicting of the capillary condensation transitions in mesopores by using the meso-canonical ensemble (gauge cell) Monte Carlo simulations. The proposed technique is demonstrated and verified against the conventional N2 and Ar low temperature adsorption methods drawing on the example of micro-mesoporous carbons of the CMK family. Advantages and limitations of CO2 adsorption characterization of nanoporous materials are discussed and further improvements are proposed. 
    more » « less
  4. In this paper, we present a combined experimental and theoretical study that explored the initial sticking of water on cooled surfaces. Specifically, these ultra-high vacuum gas–surface scattering experiments utilized supersonic molecular beam techniques in conjunction with a cryogenically cooled highly oriented pyrolytic graphite crystal, giving control over incident kinematic conditions. The D2O translational energy spanning 300–750 meV, the relative D2O flux, and the incident angle could all be varied independently. Three different experimental measurements were made. One involved measuring the total amount of D2O scattering as a function of surface temperature to determine the onset of sticking under non-equilibrium gas–surface collision conditions. Another measurement used He specular scattering to assess structural and coverage information for the interface during D2O adsorption. Finally, we used time-of-flight (TOF) measurements of the scattered D2O to determine how energy is exchanged with the graphite surface at surface temperatures above and near the conditions needed for gaseous condensation. For comparison and elaboration of the roles that internal degrees of freedom play in this process, we also did similar TOF measurements using another mass 20 incident particle, atomic neon. Enriching this study are precise molecular dynamics simulations that elaborate on gas–surface energy transfer and the roles of molecular degrees of freedom in gas–surface collisional energy exchange processes. This study furthers our fundamental understanding of energy exchange and the onset of sticking and ultimately gaseous condensation for gas–surface encounters occurring under high-velocity flows. 
    more » « less
  5. Abstract Dynamic pore‐network model (PNM) has been widely used to model pore‐scale two‐phase flow. Numerical algorithms commonly used for dynamic PNM including IMPES (implicit pressure explicit saturation) and IMP‐SIMS (implicit pressure semi‐implicit saturation) can be numerically unstable or inaccurate for challenging flow regimes such as low capillary number (Ca) flow and unfavorable displacements. We perform comprehensive analyses of IMPES and IMP‐SIMS for a wide range of flow regimes under drainage conditions and develop a novel fully implicit (FI) algorithm to address their limitations. Our simulations show the following: (1) While IMPES was reported to be numerically unstable for lowCaflow, using a smoothed local pore‐body capillary pressure curve appears to produce stable simulations. (2) Due to an approximation for the capillary driving force, IMP‐SIMS can deviate from quasi‐static solutions at equilibrium states especially in heterogeneous networks. (3) Both IMPES and IMP‐SIMS introduce mass conservation errors. The errors are small for networks with cubic pore bodies (less than 1.4% for IMPES and 1.2% for IMP‐SIMS). They become much greater for networks with square‐tube pore bodies (up to 45% for IMPES and 46% for IMP‐SIMS). Conversely, the new FI algorithm is numerically stable and mass conservative regardless of the flow regimes and pore geometries. It also precisely recovers the quasi‐static solutions at equilibrium states. The FI framework has been extended to include compressible two‐phase flow, multicomponent transport, and phase change dynamics. Example simulations of two‐phase displacements accounting for phase change show that evaporation and condensation can suppress fingering patterns generated during invasion. 
    more » « less