Since their discovery, thiolate-protected gold nanoclusters (Au n (SR) m ) have garnered a lot of interest due to their fascinating properties and “magic-number” stability. However, models describing the thermodynamic stability and electronic properties of these nanostructures as a function of their size are missing in the literature. Herein, we employ first principles calculations to rationalize the stability of fifteen experimentally determined gold nanoclusters in conjunction with a recently developed thermodynamic stability theory on small Au nanoclusters (≤102 Au atoms). Our results demonstrate that the thermodynamic stability theory can capture the stability of large, atomically precise nanoclusters, Au 279 (SR) 84 , Au 246 (SR) 80 , and Au 146 (SR) 57 , suggesting its applicability over larger cluster size regimes than its original development. Importantly, we develop structure–property relationships on Au nanoclusters, connecting their ionization potential and electron affinity to the number of gold atoms within the nanocluster. Altogether, a computational scheme is described that can aid experimental efforts towards a property-specific, targeted synthesis of gold nanoclusters.
more »
« less
Digestive ripening yields atomically precise Au nanomolecules
Digestive ripening (DR) is a synthetic method where a polydisperse colloid of metal nanoparticles upon refluxing with a free ligand in a high boiling point solvent gives monodisperse nanoparticles. Brust synthesis is known to form atomically monodisperse thiolate protected gold nanoparticles also known as gold nanomolecules (Au NMs). Unlike the Brust method which gives smaller (1–3 nm) atomically precise nanomolecules, DR has been used only for the synthesis of large nanoparticles (>5 nm) with good monodispersity. In thiolate protected gold nanoparticle Brust synthesis, the yellow colored phase transferred Au( iii ) solution is converted to a colorless Au( i ) mixture after the addition of thiol by forming Au–SR, which is then reduced to form black colored Au NMs. However, in DR, by using the same primary chemicals, the two steps were reversed: the mixture was reduced before the addition of thiol. Here we show that in DR, adding thiol after 2 minutes of reduction gives larger particles (5 nm) as reported, whereas adding thiol 30 seconds after reduction results in smaller particles (<2 nm). In this work, for the first time, DR yields atomically precise Au 25 (SR) 18 and Au 144 (SR) 60 NMs. This is reported using two aliphatic thiols – hexanethiol and dodecanethiol – as the protecting ligands. DR was also repeated using an aromatic thiol, 4- tert -butyl benzene thiol (TBBT), which yields Au 279 (SR) 84 NMs consistent with the Brust method, thereby establishing that both DR and Brust methods lead to the formation of atomically precise Au NMs, regardless of the order of thiol addition and reduction steps.
more »
« less
- Award ID(s):
- 1808138
- PAR ID:
- 10359366
- Date Published:
- Journal Name:
- New Journal of Chemistry
- Volume:
- 45
- Issue:
- 43
- ISSN:
- 1144-0546
- Page Range / eLocation ID:
- 20241 to 20248
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1–3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X‐ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum‐confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold‐thiolate nanoclusters (Aun(SR)m) are revealed to contain an inner kernel, Au–S interface (motifs), and surface ligand (‐R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smallerEg. Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed.more » « less
-
The metallic bond is arguably the most intriguing one among the three types of chemical bonds, and the resultant plasmon excitation ( e.g. in gold nanoparticles) has garnered wide interest. Recent progress in nanochemistry has led to success in obtaining atomically precise nanoclusters (NCs) of hundreds of atoms per core. In this work, thiolate-protected Au 279 (SR) 84 and Au 333 (SR) 79 NCs, both in the nascent metallic state are investigated by cryogenic optical spectroscopy down to 2.5 K. At room temperature, both NCs exhibit distinct plasmon resonances, albeit the NCs possess a gap (estimated 0.02–0.03 eV, comparable to thermal energy). Interestingly, we observe no effect on plasmons with the transition from the metallic state at r.t. to the insulating state at cryogenic temperatures (down to 2.5 K), indicating a nonthermal origin for electron-gas formation. The electronic screening-induced birth of metallic state/bonding is discussed. The obtained insights offer deeper understanding of the nascent metallic state and covalent-to-metallic bonding evolution, as well as plasmon birth from concerted excitonic transitions.more » « less
-
Atomically precise thiolate-protected gold nanomolecules have attracted interest due to their distinct electronic and chemical properties. The structure of these nanomolecules is important for understanding their peculiar properties. Here, we report the X-ray crystal structure of a 24-atom gold nanomolecule protected by 16 tert -butylthiolate ligands. The composition of Au 24 (S-C 4 H 9 ) 16 {poly[hexadecakis(μ- tert -butylthiolato)tetracosagold]} was confirmed by X-ray crystallography and electrospray ionization mass spectrometry (ESI–MS). The nanomolecule was synthesized in a one-phase synthesis and crystallized from a hexane–ethanol layered solution. The X-ray structure confirms the 16-atom core protected by two monomeric and two trimeric staples with four bridging ligands. The Au 24 (S-C 4 H 9 ) 16 cluster follows the shell-closing magic number of 8.more » « less
-
Faradays legendary Molecules of Gold have stimulated intense interest (over 165 years) but have only recently begun to yield their secrets to modern methods of chemical analysis. Here(in), we demonstrate how striking charging patterns emerge directly from native electrospray of large, gold-rich molecules that were generated by reduction of various (8) small gold(I)thiolate complexes [-RS-Au(I)-SR-], followed by extensive thermochemical processing to enrich the most robust forms. In each case (R), electrospray ionization of a picomolar solution yields a characteristic series of abundant, highly resolved peaks at related (m/z)-ratios, that can be used to deduce charges {z e+} and hence a distinct molecular mass, {MR}. A plot of {MR} versus thiolate-mass {mL} yields a straight line with slope 60.0 (the ligand count) and an intercept of 28,364-Da, the mass of 144 Au-atoms. i.e., a unique molecular composition {197Au144(SR)60}. This formula agrees with the unique chiral-icosahedral structure-model, c@12@42@60@(30,60), the Pd145(CO)60-structure, that features a massively-compact globular Au114-core (~1.6-nm) and an intrinsically chiral (I) outer shell (~2.0-nm) with 12 distinct ligand types of 5-fold equivalence], denoted by Martin et al. as virus-like on the basis of its resemblance of icosahedral-virus capsids.more » « less