skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrospray Gold Standards of Molecular Mass 32- to 52-kDa: Charging Patterns of the Ubiquitous Virus-like Clusters, I - 197Au144-5(SR)60, R = 8 Variants, in Native [HPLC]-ESI-MS
Faradays legendary Molecules of Gold have stimulated intense interest (over 165 years) but have only recently begun to yield their secrets to modern methods of chemical analysis. Here(in), we demonstrate how striking charging patterns emerge directly from native electrospray of large, gold-rich molecules that were generated by reduction of various (8) small gold(I)thiolate complexes [-RS-Au(I)-SR-], followed by extensive thermochemical processing to enrich the most robust forms. In each case (R), electrospray ionization of a picomolar solution yields a characteristic series of abundant, highly resolved peaks at related (m/z)-ratios, that can be used to deduce charges {z e+} and hence a distinct molecular mass, {MR}. A plot of {MR} versus thiolate-mass {mL} yields a straight line with slope 60.0 (the ligand count) and an intercept of 28,364-Da, the mass of 144 Au-atoms. i.e., a unique molecular composition {197Au144(SR)60}. This formula agrees with the unique chiral-icosahedral structure-model, c@12@42@60@(30,60), the Pd145(CO)60-structure, that features a massively-compact globular Au114-core (~1.6-nm) and an intrinsically chiral (I) outer shell (~2.0-nm) with 12 distinct ligand types of 5-fold equivalence], denoted by Martin et al. as virus-like on the basis of its resemblance of icosahedral-virus capsids.  more » « less
Award ID(s):
2108044
PAR ID:
10418112
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ChemRxiv
ISSN:
2573-2293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digestive ripening (DR) is a synthetic method where a polydisperse colloid of metal nanoparticles upon refluxing with a free ligand in a high boiling point solvent gives monodisperse nanoparticles. Brust synthesis is known to form atomically monodisperse thiolate protected gold nanoparticles also known as gold nanomolecules (Au NMs). Unlike the Brust method which gives smaller (1–3 nm) atomically precise nanomolecules, DR has been used only for the synthesis of large nanoparticles (>5 nm) with good monodispersity. In thiolate protected gold nanoparticle Brust synthesis, the yellow colored phase transferred Au( iii ) solution is converted to a colorless Au( i ) mixture after the addition of thiol by forming Au–SR, which is then reduced to form black colored Au NMs. However, in DR, by using the same primary chemicals, the two steps were reversed: the mixture was reduced before the addition of thiol. Here we show that in DR, adding thiol after 2 minutes of reduction gives larger particles (5 nm) as reported, whereas adding thiol 30 seconds after reduction results in smaller particles (<2 nm). In this work, for the first time, DR yields atomically precise Au 25 (SR) 18 and Au 144 (SR) 60 NMs. This is reported using two aliphatic thiols – hexanethiol and dodecanethiol – as the protecting ligands. DR was also repeated using an aromatic thiol, 4- tert -butyl benzene thiol (TBBT), which yields Au 279 (SR) 84 NMs consistent with the Brust method, thereby establishing that both DR and Brust methods lead to the formation of atomically precise Au NMs, regardless of the order of thiol addition and reduction steps. 
    more » « less
  2. null (Ed.)
    Energetically low-lying structural isomers of the much-studied thiolate-protected gold cluster Au 25 (SR) 18 − are discovered from extensive (80 ns) molecular dynamics (MD) simulations using the reactive molecular force field ReaxFF and confirmed by density functional theory (DFT). A particularly interesting isomer is found, which is topologically connected to the known crystal structure by a low-barrier collective rotation of the icosahedral Au 13 core. The isomerization takes place without breaking of any Au–S bonds. The predicted isomer is essentially iso-energetic with the known Au 25 (SR) 18 − structure, but has a distinctly different optical spectrum. It has a significantly larger collision cross-section as compared to that of the known structure, which suggests it could be detectable in gas phase ion-mobility mass spectrometry. 
    more » « less
  3. Abstract With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1–3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X‐ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum‐confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold‐thiolate nanoclusters (Aun(SR)m) are revealed to contain an inner kernel, Au–S interface (motifs), and surface ligand (‐R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smallerEg. Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed. 
    more » « less
  4. Atomically precise thiolate-protected gold nanomolecules have attracted interest due to their distinct electronic and chemical properties. The structure of these nanomolecules is important for understanding their peculiar properties. Here, we report the X-ray crystal structure of a 24-atom gold nanomolecule protected by 16 tert -butylthiolate ligands. The composition of Au 24 (S-C 4 H 9 ) 16 {poly[hexadecakis(μ- tert -butylthiolato)tetracosagold]} was confirmed by X-ray crystallography and electrospray ionization mass spectrometry (ESI–MS). The nanomolecule was synthesized in a one-phase synthesis and crystallized from a hexane–ethanol layered solution. The X-ray structure confirms the 16-atom core protected by two monomeric and two trimeric staples with four bridging ligands. The Au 24 (S-C 4 H 9 ) 16 cluster follows the shell-closing magic number of 8. 
    more » « less
  5. Since their discovery, thiolate-protected gold nanoclusters (Au n (SR) m ) have garnered a lot of interest due to their fascinating properties and “magic-number” stability. However, models describing the thermodynamic stability and electronic properties of these nanostructures as a function of their size are missing in the literature. Herein, we employ first principles calculations to rationalize the stability of fifteen experimentally determined gold nanoclusters in conjunction with a recently developed thermodynamic stability theory on small Au nanoclusters (≤102 Au atoms). Our results demonstrate that the thermodynamic stability theory can capture the stability of large, atomically precise nanoclusters, Au 279 (SR) 84 , Au 246 (SR) 80 , and Au 146 (SR) 57 , suggesting its applicability over larger cluster size regimes than its original development. Importantly, we develop structure–property relationships on Au nanoclusters, connecting their ionization potential and electron affinity to the number of gold atoms within the nanocluster. Altogether, a computational scheme is described that can aid experimental efforts towards a property-specific, targeted synthesis of gold nanoclusters. 
    more » « less