skip to main content


Title: Custos Secrets: a Service for Managing User-Provided Resource Credential Secrets for Science Gateways
Jupyter Notebooks are an enormously popular tool for creating and narrating computational research projects. They also have enormous potential for creating reproducible scientific research artifacts. Capturing the complete state of a notebook has additional benefits; for instance, the notebook execution may be split between local and remote resources, where the latter may have more powerful processing capabilities or store large or access-limited data. There are several challenges for making notebooks fully reproducible when examined in detail. The notebook code must be replicated entirely, and the underlying Python runtime environments must be identical. More subtle problems arise in replicating referenced data, external library dependencies, and runtime variable states. This paper presents solutions to these problems using Juptyer’s standard extension mechanisms to create an archivable system state for a running notebook. We show that the overhead for these additional mechanisms, which involve interacting with the underlying Linux kernel, does not introduce substantial execution time overheads, demonstrating the approach’s feasibility.  more » « less
Award ID(s):
2005506
NSF-PAR ID:
10359393
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Practice and Experience in Advanced Research Computing (PEARC '22)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jupyter Notebooks are an enormously popular tool for creating and narrating computational research projects. They also have enormous potential for creating reproducible scientific research artifacts. Capturing the complete state of a notebook has additional benefits; for instance, the notebook execution may be split between local and remote resources, where the latter may have more powerful processing capabilities or store large or access-limited data. There are several challenges for making notebooks fully reproducible when examined in detail. The notebook code must be replicated entirely, and the underlying Python runtime environments must be identical. More subtle problems arise in replicating referenced data, external library dependencies, and runtime variable states. This paper presents solutions to these problems using Juptyer’s standard extension mechanisms to create an archivable system state for a running notebook. We show that the overhead for these additional mechanisms, which involve interacting with the underlying Linux kernel, does not introduce substantial execution time overheads, demonstrating the approach’s feasibility. 
    more » « less
  2. Binder is a publicly accessible online service for executing interactive notebooks based on Git repositories. Binder dynamically builds and deploys containers following a recipe stored in the repository, then gives the user a browser-based notebook interface. The Binder group periodically releases a log of container launches from the public Binder service. Archives of launch records are available here. These records do not include identifiable information like IP addresses, but do give the source repo being launched along with some other metadata. The main content of this dataset is in the binder.sqlite file. This SQLite database includes launch records from 2018-11-03 to 2021-06-06 in the events table, which has the following schema.

    CREATE TABLE events( version INTEGER, timestamp TEXT, provider TEXT, spec TEXT, origin TEXT, ref TEXT, guessed_ref TEXT ); CREATE INDEX idx_timestamp ON events(timestamp);
    • version indicates the version of the record as assigned by Binder. The origin field became available with version 3, and the ref field with version 4. Older records where this information was not recorded will have the corresponding fields set to null.
    • timestamp is the ISO timestamp of the launch
    • provider gives the type of source repo being launched ("GitHub" is by far the most common). The rest of the explanations assume GitHub, other providers may differ.
    • spec gives the particular branch/release/commit being built. It consists of <github-id>/<repo>/<branch>.
    • origin indicates which backend was used. Each has its own storage, compute, etc. so this info might be important for evaluating caching and performance. Note that only recent records include this field. May be null.
    • ref specifies the git commit that was actually used, rather than the named branch referenced by spec. Note that this was not recorded from the beginning, so only the more recent entries include it. May be null.
    • For records where ref is not available, we attempted to clone the named reference given by spec rather than the specific commit (see below). The guessed_ref field records the commit found at the time of cloning. If the branch was updated since the container was launched, this will not be the exact version that was used, and instead will refer to whatever was available at the time (early 2021). Depending on the application, this might still be useful information. Selecting only records with version 4 (or non-null ref) will exclude these guessed commits. May be null.

    The Binder launch dataset identifies the source repos that were used, but doesn't give any indication of their contents. We crawled GitHub to get the actual specification files in the repos which were fed into repo2docker when preparing the notebook environments, as well as filesystem metadata of the repos. Some repos were deleted/made private at some point, and were thus skipped. This is indicated by the absence of any row for the given commit (or absence of both ref and guessed_ref in the events table). The schema is as follows.

    CREATE TABLE spec_files ( ref TEXT NOT NULL PRIMARY KEY, ls TEXT, runtime BLOB, apt BLOB, conda BLOB, pip BLOB, pipfile BLOB, julia BLOB, r BLOB, nix BLOB, docker BLOB, setup BLOB, postbuild BLOB, start BLOB );

    Here ref corresponds to ref and/or guessed_ref from the events table. For each repo, we collected spec files into the following fields (see the repo2docker docs for details on what these are). The records in the database are simply the verbatim file contents, with no parsing or further processing performed.

    • runtime: runtime.txt
    • apt: apt.txt
    • conda: environment.yml
    • pip: requirements.txt
    • pipfile: Pipfile.lock or Pipfile
    • julia: Project.toml or REQUIRE
    • r: install.R
    • nix: default.nix
    • docker: Dockerfile
    • setup: setup.py
    • postbuild: postBuild
    • start: start

    The ls field gives a metadata listing of the repo contents (excluding the .git directory). This field is JSON encoded with the following structure based on JSON types:

    • Object: filesystem directory. Keys are file names within it. Values are the contents, which can be regular files, symlinks, or subdirectories.
    • String: symlink. The string value gives the link target.
    • Number: regular file. The number value gives the file size in bytes.
    CREATE TABLE clean_specs ( ref TEXT NOT NULL PRIMARY KEY, conda_channels TEXT, conda_packages TEXT, pip_packages TEXT, apt_packages TEXT );

    The clean_specs table provides parsed and validated specifications for some of the specification files (currently Pip, Conda, and APT packages). Each column gives either a JSON encoded list of package requirements, or null. APT packages have been validated using a regex adapted from the repo2docker source. Pip packages have been parsed and normalized using the Requirement class from the pkg_resources package of setuptools. Conda packages have been parsed and normalized using the conda.models.match_spec.MatchSpec class included with the library form of Conda (distinct from the command line tool). Users might want to use these parsers when working with the package data, as the specifications can become fairly complex.

    The missing table gives the repos that were not accessible, and event_logs records which log files have already been added. These tables are used for updating the dataset and should not be of interest to users.

     
    more » « less
  3. null (Ed.)
    The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert data scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge. 
    more » « less
  4. Data analysis is an exploratory, interactive, and often collaborative process. Computational notebooks have become a popular tool to support this process, among others because of their ability to interleave code, narrative text, and results. However, notebooks in practice are often criticized as hard to maintain and being of low code quality, including problems such as unused or duplicated code and out-of-order code execution. Data scientists can benefit from better tool support when maintaining and evolving notebooks. We argue that central to such tool support is identifying the structure of notebooks. We present a lightweight and accurate approach to extract notebook structure and outline several ways such structure can be used to improve maintenance tooling for notebooks, including navigation and finding alternatives. 
    more » « less
  5. Abstract

    The era of ‘big data’ promises to provide new hydrologic insights, and open web‐based platforms are being developed and adopted by the hydrologic science community to harness these datasets and data services. This shift accompanies advances in hydrology education and the growth of web‐based hydrology learning modules, but their capacity to utilize emerging open platforms and data services to enhance student learning through data‐driven activities remains largely untapped. Given that generic equations may not easily translate into local or regional solutions, teaching students to explore how well models or equations work in particular settings or to answer specific problems using real data is essential. This article introduces an open web‐based module developed to advance data‐driven hydrologic process learning, targeting upper level undergraduate and early graduate students in hydrology and engineering. The module was developed and deployed on the HydroLearn open educational platform, which provides a formal pedagogical structure for developing effective problem‐based learning activities. We found that data‐driven learning activities utilizing collaborative open web platforms like CUAHSI HydroShare and JupyterHub to store and run computational notebooks allowed students to access and work with datasets for systems of personal interest and promoted critical evaluation of results and assumptions. Initial student feedback was generally positive, but also highlighted challenges including trouble‐shooting and future‐proofing difficulties and some resistance to programming and new software. Opportunities to further enhance hydrology learning include better articulating the benefits of coding and open web platforms upfront, incorporating additional user‐support tools, and focusing methods and questions on implementing and adapting notebooks to explore fundamental processes rather than tools and syntax. The profound shift in the field of hydrology toward big data, open data services and reproducible research practices requires hydrology instructors to rethink traditional content delivery and focus instruction on harnessing these datasets and practices in the preparation of future hydrologists and engineers.

     
    more » « less