skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UV-MALDESI Imaging of Lipids and Metabolites in Bombus impatiens
The study of the bee lipidome provides valuable information about bees’ metabolic adaptation to changes in climate. Mass spectrometry imaging is an informative technique that allows for visualization of spatial distributions of many hundreds of molecules, including lipids, from a single sample. Shotgun lipidomics is another useful technique that allows for rapid analysis of a complex sample, enabling quantitation and confident identification of lipid classes. Much is unknown about the spatial distribution, differences between species, etc. of lipids in bees. Here, we report a UV-MALDESI imaging-Orbitrap MS method for bee sections to explore the lipidome of two species: Bombus impatiens and Megachile rotundata. We show the distribution and relative quantitation of multiple lipids, and their differences across bee species.  more » « less
Award ID(s):
1921562
PAR ID:
10359481
Author(s) / Creator(s):
Date Published:
Journal Name:
70th American Society for Mass Spectrometry (ASMS) Conference, Minneapolis, MN
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phenological distributions are characterized by their central tendency, breadth, and shape, and all three determine the extent to which interacting species overlap in time. Pollination mutualisms rely on temporal co‐occurrence of pollinators and their floral resources, and although much work has been done to characterize the shapes of flower phenological distributions, similar studies that include pollinators are lacking. Here, we provide the first broad assessment of skewness, a component of distribution shape, for a bee community. We compare skewness in bees to that in flowers, relate bee and flower skewness to other properties of their phenology, and quantify the potential consequences of differences in skewness between bees and flowers. Both bee and flower phenologies tend to be right‐skewed, with a more exaggerated asymmetry in bees. Early‐season species tend to be the most skewed, and this relationship is also stronger in bees than in flowers. Based on a simulation experiment, differences in bee and flower skewness could account for up to 14% of pairwise overlap differences. Given the potential for interaction loss, we argue that difference in skewness of interacting species is an underappreciated property of phenological change. 
    more » « less
  2. null (Ed.)
    Recurrent honey bee losses make it critical to understand the impact of human interventions, such as antibiotics use in apiculture. Antibiotics are used to prevent or treat bacterial infections in colonies. However, little is known about their effects on honey bee development. We studied the effect of two commercial beekeeping antibiotics on the bee physiology and behavior throughout development. Our results show that antibiotic treatments have an effect on amount of lipids and rate of behavioral development. Lipid amount in treated bees was higher than those not treated. Also, the timing of antibiotic treatment had distinct effects for the age of onset of behaviors starting with cleaning, then nursing and lastly foraging. Bees treated during larva-pupa stages demonstrated an accelerated behavioral development and loss of lipids, while bees treated from larva to adulthood had a delay in behavioral development and loss of lipids. The effects were shared across the two antibiotics tested, TerramycinR (oxytetracycline) and TylanR (tylosin tartrate). These results on effects of antibiotic treatments suggest a role of microbiota in the interaction between the fat body and brain that is important for honey bee behavioral development. 
    more » « less
  3. Spatial lipidomics is a powerful technique for understanding the complexity of the lipidome in biological systems through mass spectrometry imaging (MSI). Recent advancements have enabled isomer-selected MSI (iMSI) of lipids in biological samples using both online and off-line derivatization strategies. Despite these impressive developments, most iMSI techniques are limited to either positive or negative ion mode analysis, restricting the molecular coverage achievable in a single experiment. Additionally, derivatization efficiency often varies across lipid classes, presenting challenges for comprehensive lipid analysis. In this study, we introduce tetrakis(4-carboxyphenyl)porphyrin (TCPP) as a universal photosensitizer that facilitates online lipid derivatization in both positive and negative ionization modes via singlet oxygen (1O2) reaction. This method enables the identification and localization of both acyl chain compositions and lipid carbon-carbon (C=C) isomers in liquid extraction-based ambient ionization techniques. We have also employed sodium fluoride (NaF) as a solvent dopant to enhance the analysis of low-abundance and poorly ionizable biomolecules. By integrating these online derivatization and signal enhancement strategies with nanospray desorption electrospray ionization (nano-DESI), we achieved dual polarity iMSI within the same sample. We demonstrate imaging of low-abundance isomeric lipids, which were otherwise below the noise level. Notably, TCPP significantly enhances the efficiency of the online derivatization of unsaturated fatty acids, for which other photosensitizers are inefficient. This novel approach allows for the imaging of isomeric fatty acids and phospholipids from multiple classes in the same experiment, revealing their distinct spatial localization within biological tissues. 
    more » « less
  4. ABSTRACT AimAll bees depend on angiosperms for survival, while many angiosperms depend on bees for reproduction. However, bee and flowering plant species richness do not peak in the same geographical regions of the world, suggesting that the flora in regions where bees are not as diverse, such as the tropics, may be relatively less bee‐dependent. We test this assumption by analysing whether local relative bee diversity can predict the proportion of angiosperm species that attract bees (i.e., “bee flowers”). LocationThe Americas. Time PeriodPresent. Major Taxa StudiedBees and angiosperms. MethodsWe map the proportion of bees to angiosperm species using recently available datasets of geographic distribution for both taxa. We then combine data from surveys on pollination systems for 56 floristic communities to estimate the proportion of angiosperm species with bee flowers in different regions. Finally, we test whether the proportion of bee flowers in a community can be predicted by a combination of relative bee species richness and abiotic environmental variables. ResultsBroad distribution maps show that the relative richness of bees in relation to angiosperms decreases in tropical areas; however, there is no evidence that tropical floristic communities are less dependent on bees. Interestingly, the proportion of angiosperm species with bee flowers was almost always found to be around 50% across biomes, with some variation depending on the habitat type and method of data collection. Main ConclusionsOur results suggest that plant communities can be highly bee‐dependent even where bees are relatively less diverse. While lower species richness does not mean lower abundance, and fewer bee species of specific life histories can still provide adequate pollination supply for a large number of angiosperm species, this pattern may impact how bee flowers interact with bees in different areas, and consequently how bees and bee flower specialisations have evolved over time. 
    more » « less
  5. Foster, Leonard (Ed.)
    Abstract Honey bees are important organisms for research in many fields, including physiology, behavior, and ecology. Honey bee colonies are relatively easy and affordable to procure, manage, and replace. However, some difficulties still exist in honey bee research, specifically that honey bee colonies have a distinct seasonality, especially in temperate regions. Honey bee colonies transition from a large society in which workers have a strict temporal division of labor in the summer, to a group of behaviorally flexible workers who manage the colony over winter. Furthermore, opening colonies or collecting bees when they are outside has the potential to harm the colony because of the disruption in thermoregulation. Here, we present a simple and affordable indoor management method utilizing a mylar tent and controlled environmental conditions that allows bees to freely fly without access to outdoor space. This technique permits research labs to successfully keep several colonies persistently active during winter at higher latitudes. Having an extended research period is particularly important for training students, allowing preliminary experiments to be performed, and developing methods. However, we find distinct behavioral differences in honey bees managed in this situation. Specifically learning and thermoregulatory behaviors were diminished in the bees managed in the tent. Therefore, we recommend caution in utilizing these winter bees for full experiments until more is known. Overall, this method expands the research potential on honey bees, and calls attention to the additional research that is needed to understand how indoor management might affect honey bees. 
    more » « less