Abstract Active processes drive biological dynamics across various scales and include subcellular cytoskeletal remodelling, tissue development in embryogenesis and the population-level expansion of bacterial colonies. In each of these, biological functionality requires collective flows to occur while self-organised structures are protected. However, the mechanisms by which active flows can spontaneously constrain their dynamics to preserve structure are not known. Here, by studying collective flows and defect dynamics in active nematic films, we demonstrate the existence of a self-constraint, namely a two-way, spontaneously arising relationship between activity-driven isosurfaces of flow boundaries and mesoscale nematic structures. We show that self-motile defects are tightly constrained to viscometric surfaces, which are contours along which the vorticity and the strain rate are balanced. This in turn reveals that self-motile defects break mirror symmetry when they move along a single viscometric surface. This is explained by an interdependence between viscometric surfaces and bend walls, which are elongated narrow kinks in the orientation field. These findings indicate that defects cannot be treated as solitary points. Instead, their associated mesoscale deformations are key to the steady-state coupling to hydrodynamic flows. This mesoscale cross-field self-constraint offers a framework for tackling complex three-dimensional active turbulence, designing dynamic control into biomimetic materials and understanding how biological systems can employ active stress for dynamic self-organisation.
more »
« less
Submersed micropatterned structures control active nematic flow, topology, and concentration
Coupling between flows and material properties imbues rheological matter with its wide-ranging applicability, hence the excitement for harnessing the rheology of active fluids for which internal structure and continuous energy injection lead to spontaneous flows and complex, out-of-equilibrium dynamics. We propose and demonstrate a convenient, highly tunable method for controlling flow, topology, and composition within active films. Our approach establishes rheological coupling via the indirect presence of fully submersed micropatterned structures within a thin, underlying oil layer. Simulations reveal that micropatterned structures produce effective virtual boundaries within the superjacent active nematic film due to differences in viscous dissipation as a function of depth. This accessible method of applying position-dependent, effective dissipation to the active films presents a nonintrusive pathway for engineering active microfluidic systems.
more »
« less
- Award ID(s):
- 1808926
- PAR ID:
- 10359508
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 38
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the dissipation enhancement by cellular flows. Previous work by Iyer, Xu, and Zlato\v{s} produces a family of cellular flows that can enhance dissipation by an arbitrarily large amount. We improve this result by providing quantitative bounds on the dissipation enhancement in terms of the flow amplitude, cell size and diffusivity. Explicitly we show that the \emph{mixing time} is bounded by the exit time from one cell when the flow amplitude is large enough, and by the reciprocal of the effective diffusivity when the flow amplitude is small. This agrees with the optimal heuristics. We also prove a general result relating the \emph{dissipation time} of incompressible flows to the \emph{mixing time}. The main idea behind the proof is to study the dynamics probabilistically and construct a successful coupling.more » « less
-
In this article, we introduce a new method for discretizing micro-macro models of dilute polymeric fluids by integrating a finite element method (FEM) discretization for the macroscopic fluid dynamics equation with a deterministic variational particle scheme for the microscopic Fokker-Planck equation. To address challenges arising from micro-macro coupling, we employ a discrete energetic variational approach to derive a coarse-grained micro-macro model with a particle approximation first and then develop a particle-FEM discretization for the coarse-grained model. The accuracy of the proposed method is evaluated for a Hookean dumbbell model in a Couette flow by comparing the computed velocity field with existing analytical solutions. We also use our method to study nonlinear FENE dumbbell models in different scenarios, such as extensional flow, pure shear flow, and lid-driven cavity flow. Numerical examples demonstrate that the proposed deterministic particle approach can accurately capture the various key rheological phenomena in the original FENE model, including hysteresis and δ-function-like spike behavior in extensional flows, velocity overshoot phenomenon in pure shear flows, symmetries breaking, vortex center shifting, and vortices weakening in lid-driven cavity flows, with a small number of particles.more » « less
-
Complex and active fluids find broad applications in flows through porous materials. Nontrivial rheology can couple to porous microstructure leading to surprising flow patterns and associated transport properties in geophysical, biological, and industrial systems. Viscoelastic instabilities are highly sensitive to pore geometry and can give rise to chaotic velocity fluctuations. A number of recent studies have begun to untangle how the pore-scale geometry influences the sample-scale flow topology and the resulting dispersive transport properties of these complex systems. Beyond classical rheological properties, active colloids and swimming cells exhibit a range of unique properties, including reduced effective viscosity, collective motion, and random walks, that present novel challenges to understanding their mechanics and transport in porous media flows. This review article aims to provide a brief overview of essential, fundamental concepts followed by an in-depth summary of recent developments in this rapidly evolving field. The chosen topics are motivated by applications, and new opportunities for discovery are highlighted.more » « less
-
Howard A. Stone (Ed.)Active colloidal systems with nonequilibrium self-organization constitute a long- standing, challenging area in material sciences and biology. To understand how hydrodynamic flow may be used to actively control self-assembly of Janus particles (JPs), we developed a model for the many-body hydrodynamics of amphiphilic JPs suspended in a viscous fluid with imposed far-field background flows [Fu et al., J. Fluid Mech. 941, A41 (2022)]. In this paper we alter the hydrophobic distribution on the JP-solvent interface to investigate the hydrodynamics that underlies the various morphologies and rheological properties of the JP assembly in the suspension. We find that JPs assemble into unilamellar, multilamellar, and striated structures. To introduce dynamics, we include a planar linear shear flow and a steady Taylor-Green mixing flow and measure the collective dynamics of JP particles in terms of their (a) free energy from the hydrophobic interactions between the JPs, (b) order parameter for the ordering of JPs in terms of alignment of their directors, and (c) strain parameter that captures the deformation in the assembly. We characterize the effective material properties of the JP structures and find that the unilamellar structure increases orientation order under shear flow, the multilamellar structure behaves as a shear thinning fluid, and the striated structure possesses a yield stress. These numerical results provide insights into dynamic control of nonequilibrium active biological systems with similar self-organization.more » « less
An official website of the United States government

