skip to main content


Title: Influence of thermal diffusion on the spatial resolution of photothermal microscopy
Photothermal microscopy is a powerful method for investigating biological systems and solid state materials. Using a modulated pump to excite the sample, a continuous probe beam monitors the change in the refractive index of the sample due to the modulated heating. These experiments are typically performed at high frequencies to reduce the 1/f noise, achieving a higher signal to noise ratio. In this paper, we explore how the resolution and sensitivity of the photothermal experiments change when the modulation frequency is brought down below 100kHz. In the instance that the pump and probe are cofocused at the sample, the resolution is determined by the size of the pump beam. On the other hand, when a widefield pump is used, significant broadening occurs for frequencies under 20kHz. This broadening is attributed to thermal diffusion. However, the amount of broadening is less than that expected from the thermal diffusion length, which is about 1.7μm at 10kHz for nanoparticles in glycerol. We also explore the situation where the point spread functions of the pump and probe beams are smaller than the particle size as well as how the penetration depth depends on the properties of the pump and probe beams.  more » « less
Award ID(s):
1902403
NSF-PAR ID:
10359582
Author(s) / Creator(s):
;
Editor(s):
Kabashin, Andrei V.; Farsari, Maria; Mahjouri-Samani, Masoud
Date Published:
Journal Name:
Proc. SPIE 11990, Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications
Volume:
SPIE 11990
Page Range / eLocation ID:
1199007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Time-domain thermoreflectance and frequency-domain thermoreflectance (FDTR) have been widely used for non-contact measurement of anisotropic thermal conductivity of materials with high spatial resolution. However, the requirement of a high thermoreflectance coefficient restricts the choice of metal coating and laser wavelength. The accuracy of the measurement is often limited by the high sensitivity to the radii of the laser beams. We describe an alternative frequency-domain pump-probe technique based on probe beam deflection. The beam deflection is primarily caused by thermoelastic deformation of the sample surface, with a magnitude determined by the thermal expansion coefficient of the bulk material to measure. We derive an analytical solution to the coupled elasticity and heat diffusion equations for periodic heating of a multilayer sample with anisotropic elastic constants, thermal conductivity, and thermal expansion coefficients. In most cases, a simplified model can reliably describe the frequency dependence of the beam deflection signal without knowledge of the elastic constants and thermal expansion coefficients of the material. The magnitude of the probe beam deflection signal is larger than the maximum magnitude achievable by thermoreflectance detection of surface temperatures if the thermal expansion coefficient is greater than 5 × 10 −6  K −1 . The uncertainty propagated from laser beam radii is smaller than that in FDTR when using a large beam offset. We find a nearly perfect matching of the measured signal and model prediction, and measure thermal conductivities within 6% of accepted values for materials spanning the range of polymers to gold, 0.1–300 W/(m K). 
    more » « less
  2. We present a novel, to the best of knowledge, time-resolved, optical pump/NIR supercontinuum probe spectrometer suitable for oscillators. A NIR supercontinuum probe spectrum (850–1250 nm) is generated in a photonic crystal fiber, dispersed across a digital micromirror device (DMD), and then raster scanned into a single element detector at a 5 Hz rate. Dual modulation of pump and probe beams at disparate frequencies permits simultaneous measurement of both the bare reflectanceRand its photoinduced change ΔRthrough lock-in detection, allowing for continuously self-normalized measurement of ΔR/R. Example data are presented on a germanium wafer sample that demonstrate for signals of order ΔR/R ∼ 10−3, a 2.87 nm spectral resolution and≲<#comment/>400 fs temporal resolution pre-recompression, and comparable sensitivity to standard time-resolved, amplifier-based pump–probe techniques.

     
    more » « less
  3. Optica Publishing Group (Ed.)
    This contribution introduces a pump-probe photothermal mirror Z-scan method to measure the thermal quantum yield, the thermal diffusivity, and other photothermal parameters of an opaque solid. The focusing of a pump beam of light onto the sample generates thermoelastic surface distortions. The distorted surface acts as a mirror affecting the diffraction pattern of a reflected probe beam yielding the experimental signal. Scanning the focusing lens produces a single peak photothermal mirror Z-scan signature. The amplitude and time evolution of the signal determines the sample’s photothermal properties. The method is used to analyze gallium arsenide and silicon plates, obtaining good agreement with previous studies. 
    more » « less
  4. Four-wave mixing (FWM) of optical fields has been extensively used in quantum information processing, sensing, and memories. It also forms a basis for nonlinear spectroscopies such as transient grating, stimulated Raman, and photon echo where phase matching is used to select desired components of the third-order response of matter. Here we report an experimental study of the two-dimensional quantum noise intensity difference spectra of a pair of squeezed beams generated by FWM in hot Rb vapor. The measurement reveals details of the χ ( 3 ) susceptibility dressed by the strong pump field which induces an AC Stark shift, with higher spectral resolution compared to classical measurements of probe and conjugate beam intensities. We demonstrate how quantum correlations of squeezed light can be utilized as a spectroscopic tool which unlike their classical counterparts are robust to external noise. 
    more » « less
  5. Abstract

    The controlled nanoscale patterning of 2D materials is a promising approach for engineering the optoelectronic, thermal, and mechanical properties of these materials to achieve novel functionalities and devices. Herein, high‐resolution patterning of hexagonal boron nitride (h‐BN) is demonstrated via both helium and neon ion beams and an optimal dosage range for both ions that serve as a baseline for insulating 2D materials is identified. Through this nanofabrication approach, a grating with a 35 nm pitch, individual structure sizes down to 20 nm, and additional nanostructures created by patterning crystal step edges are demonstrated. Raman spectroscopy is used to study the defects induced by the ion beam patterning and is correlated to scanning probe microscopy. Photothermal and scanning near‐field optical microscopy measure the resulting near‐field absorption and scattering of the nanostructures. These measurements reveal a large photothermal expansion of nanostructured h‐BN that is dependent on the height to width aspect ratio of the nanostructures. This effect is attributed to the large anisotropy of the thermal expansion coefficients of h‐BN and the nanostructuring implemented. The photothermal expansion should be present in other van der Waals materials with large anisotropy and can lead to applications such as nanomechanical switches driven by light.

     
    more » « less