skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Marine Microbial Siderophores: Reactivity and Structural Diversity
Most bacteria require iron to grow, yet soluble forms of iron are largely not available to microbes due to a combination of low solubility of ferric ion in the environment and sequestration in proteins and enzymes in living organisms. Microbes therefore compete for iron in various ways, including by production of siderophores, which are ligands with a high affinity for ferric ion and which facilitate transport of Fe(III) into and within bacteria. This review summarizes our work on the classes of siderophores isolated from open ocean isolates, including suites of amphiphilic siderophores that vary in the nature of the fatty acid appendages, photoreactive Fe(III)-siderophore complexes as a result of coordination to -hydroxy carboxylic acid groups, and a new series of tris catechol siderophores.  more » « less
Award ID(s):
2108596
PAR ID:
10359606
Author(s) / Creator(s):
Publisher / Repository:
American Institute of Chemists
Date Published:
Journal Name:
The chemist
ISSN:
1945-0702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The vast majority of bacteria require iron to grow. A significant iron acquisition strategy is the production of siderophores, which are secondary microbial metabolites synthesized to sequester iron(III). Siderophore structures encompass a variety of forms, of which highly modified peptidic siderophores are of interest herein. State‐of‐the‐art genome mining tools, such as antiSMASH (antibiotics & Secondary Metabolite Analysis SHell), hold the potential to predict and discover new peptidic siderophores, including a combinatoric suite of triscatechol siderophores framed on a triserine‐ester backbone of the general class, (DHB‐ l / d CAA‐ l Ser) 3 (CAA, cationic amino acid). Siderophores with l / d Arg, l / d Lys and l Orn, but not d Orn, were predicted in bacterial genomes. Fortuitously the d Orn siderophore was identified, yet its lack of prediction highlights the limitation of current genome mining tools. The full combinatoric suite of these siderophores, which form chiral iron(III) complexes, reveals stereospecific coordination chemistry encoded in microbial genomes. The chirality embedded in this suite of Fe(III)‐siderophores raises the question of whether the relevant siderophore‐mediated iron acquisition pathways are stereospecific and selective for ferric siderophore complexes of a defined configuration. 
    more » « less
  2. Bacteria compete for iron by producing small-molecule chelators known as siderophores. The triscatechol siderophores trivanchrobactin and ruckerbactin, produced byVibrio campbelliiDS40M4 andYersinia ruckeriYRB, respectively, are naturally occurring diastereomers that form chiral ferric complexes in opposing enantiomeric configurations. Chiral recognition is a hallmark of specificity in biological systems, yet the biological consequences of chiral coordination compounds are relatively unexplored. We demonstrate stereoselective discrimination of microbial growth and iron uptake by chiral Fe(III)–siderophores. The siderophore utilization pathway inV. campbelliiDS40M4 is stereoselective for Λ-Fe(III)–trivanchrobactin, but not the mismatched Δ-Fe(III)–ruckerbactin diastereomer. Chiral recognition is likely conferred by the stereospecificity of both the outer membrane receptor (OMR) protein FvtA and the periplasmic binding protein (PBP) FvtB, both of which must interact preferentially with the Λ-configured Fe(III)-coordination complexes. 
    more » « less
  3. Ferric complexes of triscatechol siderophores may assume one of two enantiomeric configurations at the iron site. Chirality is known to be important in the iron uptake process, however an understanding of the molecular features directing stereospecific coordination remains ambiguous. Synthesis of the full suite of (DHB L/D Lys L/D Ser) 3 macrolactone diastereomers, which includes the siderophore cyclic trichrysobactin (CTC), enables the effects that the chirality of Lys and Ser residues exert on the configuration of the Fe( iii ) complex to be defined. Computationally optimized geometries indicate that the Λ/Δ configurational preferences are set by steric interactions between the Lys sidechains and the peptide backbone. The ability of each (DHB L/D Lys L/D Ser) 3 diastereomer to form a stable Fe( iii ) complex prompted a genomic search for biosynthetic gene clusters (BGCs) encoding the synthesis of these diastereomers in microbes. The genome of the plant pathogen Dickeya chrysanthemi EC16 was sequenced and the genes responsible for the biosynthesis of CTC were identified. A related but distinct BGC was identified in the genome of the opportunistic pathogen Yersinia frederiksenii ATCC 33641; isolation of the siderophore from Y. frederiksenii ATCC 33641, named frederiksenibactin (FSB), revealed the triscatechol oligoester, linear -(DHB L Lys L Ser) 3 . Circular dichroism (CD) spectroscopy establishes that Fe( iii )–CTC and Fe( iii )–FSB are formed in opposite enantiomeric configuration, consistent with the results of the ferric complexes of the cyclic (DHB L/D Lys L/D Ser) 3 diastereomers. 
    more » « less
  4. Wencewicz, Timothy (Ed.)
    The C-diazeniumdiolate (N-nitrosohydroxylamine) group in the amino acid graminine (Gra) is a newly discovered Fe(III) ligand in microbial siderophores. Graminine was first identified in the siderophore gramibactin, and since this discovery, other Gra-containing siderophores have been identified, including megapolibactins, plantaribactin, gladiobactin, trinickiabactin (gramibactin B), and tistrellabactins. The C-diazeniumdiolate is photoreactive in UV light which provides a convenient characterization tool for this type of of siderophores. This report details the process of genomics-driven identification of bacteria producing Gra-containing siderophores based on selected biosynthetic enzymes, as well as bacterial culturing, isolation and characterization of the C-diazeniumdiolate siderophores containing Gra. 
    more » « less
  5. Yersinia pestis, the pathogen causing plague, requires iron to grow. Y. pestis employs several uptake pathways for iron, including the siderophore yersiniabactin, as well as hemin and inorganic iron. The Y. pestis iron assimilation repertoire further harbors the uncharacterized YiuRABC pathway, presumed to transport an as yet unidentified Fe(III)-siderophore(s). Through intrinsic fluorescence quenching of the periplasmic binding protein YiuA, we discovered that YiuA displays high affinity towards Fe(III) complexes of the hydrolysis products of enterobactin, Fe(III)-[di-(DHB-LSer)] and Fe(III)-[DHB-LSer]2, with Kd‘s of 27.6 ± 4.2 nM and 28.2 ± 6.9 nM, respectively, as well as the bis-catechol siderophore butanochelin, with Kd 0.76 ± 0.17 nM. By comparison, YiuA has a much weaker affinity for intact Fe(III)-enterobactin, Kd 444.7 ± 20.6 nM. Electronic circular dichroism spectroscopy reveals YiuA has a strong preference for binding Λ configured Fe(III)-siderophores, which can be achieved with the Fe(III) bis-catechol complexes but not Fe(III)-enterobactin. 
    more » « less