skip to main content


Title: Phase-Controlled Synthesis of Ru Nanocrystals via Template-Directed Growth: Surface Energy versus Bulk Energy
Award ID(s):
2105602
NSF-PAR ID:
10359647
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nano Letters
Volume:
22
Issue:
9
ISSN:
1530-6984
Page Range / eLocation ID:
3591 to 3597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Energy-harvesting designs typically include highly entangled app-lication-level and energy-management subsystems that span both hardware and software. This tight integration makes developing sophisticated energy-harvesting systems challenging, as developers have to consider both embedded system development and intermit-tent energy management simultaneously. Even when successful, solutions are often monolithic, produce suboptimal performance, and require substantial effort to translate to a new design. Instead, we propose a new energy-harvesting power management architecture, Altair that offloads all energy-management operations to the power supply itself while making the power supply programmable. Altair introduces an energy supervisor and a standard interface to enable an abstraction layer between the power supply hardware and the running application, making both replaceable and recon-figurable. To ensure minimal resource conflict on the application processor, while running resource-hungry optimization techniques in the supervisor, we implement the Altair design in a lower power microcontroller that runs in parallel with the application. We also develop a programmable power supply module and a software library for seamless application development with Altair. We evaluate the versatility of the proposed architecture across a spectrum of IoT devices and demonstrate the generality of the plat-form. We also design and implement an online energy-management technique using reinforcement learning on top of the platform and compare the performance against fixed duty-cycle baselines. Results indicate that sensors running the online energy-manager perform similar to continuously powered sensors, have a l0x higher event generation rate than the intermittently powered ones, 1.8-7x higher event detection accuracy, experience 50% fewer power failures, and are 44% more available than the sensors that maintain a constant duty-cycle. 
    more » « less
  2. Energy insecurity poses a global challenge with far-reaching social equity and health implications. This paper provides a comprehensive perspective on the relationship between energy insecurity and health outcomes in developed countries. Existing research has identified associations between energy insecurity and various physical and mental health outcomes. Moreover, climate change can exacerbate the adverse health consequences of energy insecurity, disproportionately affecting vulnerable populations. Based on a review of existing literature, this paper identifies several knowledge gaps, proposes future research directions, and discusses data challenges faced by researchers in measuring energy insecurity and assessing the health impacts of existing programs that tackle energy insecurity. Furthermore, the paper highlights the importance of fostering collaboration among different governmental agencies and other sectors to enhance energy insecurity program management and data collection for program evaluation.

     
    more » « less
  3. null (Ed.)